
acmqueue | july-august 2021 1

static analysis

P
ast research has shown that static-analysis
tools suffer from common usability issues
such as a high rate of false positives, lack
of responsiveness, and unclear warning
descriptions and classifications. Although

these tools have grown more complex and their
industry usage has spread, those issues have remained
prominent.6,7,9,11,13,15,19,20

To address the usability issues of static-analysis tools,
Lisa Nguyen Quang Do et al.20 proposed a user-centered
approach to designing these tools during the development
of the analysis, as opposed to keeping the development
of the analysis and its UI (user interface) separate. To this
end, they defined 10 guidelines for designing the UI of an
analysis tool. The authors extracted those guidelines from
existing literature and a study that they have conducted
across 17 static-analysis tools and 87 software developers
at Software AG. The guidelines consider analysis engine
requirements, user behavior, reporting platforms, and the

Evaluating
tool design
guidelines
with SWAN

DANIIL TIGANOV

LISA NGUYEN QUANG DO

KARIM ALI

1 of 23 TEXT
ONLY

 UIs
Designing

for Static-Analysis Tools

acmqueue | july-august 2021 2

static analysis

effects of company policies on the usage and adoption of
static-analysis tools.18

This article explores the effect of applying this user-
centered approach and the design guidelines to SWAN,26
a security-focused static-analysis tool for the Swift
programming language. SWAN is being actively developed
to feature better integration into the Swift development
workflow, a faster and more precise analysis engine, and
a new UI. The purpose of this article is to evaluate the
effectiveness of the approach and guidelines for improving
the usability of the next version of SWAN.

SWAN is being created to address the lack of openly
available static-analysis tools for Swift. It provides users
with a CLI (command-line interface) and GUI (graphical
user interface) to visualize the results of its static
analyses. One of SWAN’s goals is to provide immediate
analysis results during development, as opposed to running
the analysis overnight, as is often done in industry.9,15

Multiple elements of SWAN make it an interesting case
study for exploring static-analysis tool usability. First, it
has a large target audience: all Swift iOS developers (in the
remainder of this article, the terms Swift developers and
iOS developers are used interchangeably). While this user
group spans different profiles, from large organizations
to single developers, their varying requirements are
tamed by SWAN’s immediate, lightweight nature and
tight integration into the Swift development workflow.
Therefore, how the various types of developers resolve
warnings is very similar, as are their UI requirements.

Second, because of its goal to provide immediate
results, SWAN has the potential to integrate easily into

2 of 23

acmqueue | july-august 2021 3

static analysis

developers’ workflows, allowing it to support more use
cases and usability tests in the future. Third, SWAN is
independent from existing analysis platforms. Therefore,
its UI can be modified without the external constraints
that those platforms would impose, allowing exploration
of different UI designs.

ANALYZING SWIFT PROGRAMS
Swift23 is an open-source programming language and
Apple’s recommended choice for development on both
its mobile operating system, iOS,3 and desktop operating
system, macOS.4 The web-traffic analysis tool StatCounter
estimates that in 2019 iPhones and iPads made up 24.79
percent of mobile devices across the world,22 and macOS
devices accounted for 16.46 percent of desktop machines.21
Trends also show that the popularity of both operating
systems in 2020 has increased by 4.41 percent and 3.82
percent, respectively. Therefore, the ability to conduct
static analysis of Swift applications has significant impact
on millions of users around the world.

Although many static-analysis frameworks exist
for Android devices (e.g., FlowDroid,5 SCanDroid,8 and
DroidInfer12), there is a lack of comparable tools for
Swift. While LLVM16 and Clang17 support some low-level
analyses, they are unsuitable for deeper analyses of
Swift applications, such as the precise detection of data
leaks. This is because language-specific structures and
information are typically lost during the compilation of
Swift source code to low-level LLVM IR. Moreover, most of
the currently available tools for Swift (e.g., SwiftLint24 and
Tailor25) only help enforce Swift best-coding practices.

3 of 23

acmqueue | july-august 2021 4

static analysis

SWAN bridges the gap between the increasing popularity
of Swift and the lack of available analysis tools.26 This open-
source static-analysis framework for Swift primarily targets
app developers. It offers both a CLI and a GUI. The CLI
enables the developer to integrate SWAN into a continuous
integration workflow, providing analysis results at major
development milestones. Alternatively, developers can
use the GUI to obtain on-demand analysis results directly
in VSCode.28 This relatively immediate feedback helps
developers focus on the task at hand, which further helps
them fix more bugs in less time.14

Figure 1 shows the main GUI elements of the SWAN
VSCode extension. The user starts SWAN by selecting
the SWAN tab and pressing Run Taint Analysis in the
sidebar. The extension then automatically attaches to an

4 of 23

FIGURE 1: The main GUI of the SWAN VSCode extension

acmqueue | july-august 2021 5

static analysis

existing SWAN instance, if one is running, or starts a new
one if none is already running. For the code example in
the figure, SWAN displays the results in the sidebar in file
tree–like form. Each vulnerable path is an element in the
tree marked with a red cross. Its children are the nodes in
the path. The first child is the source, the last is the sink,
and any nodes in between are intermediates. The user may
select any path node, and the extension will open the file at
the corresponding source location. In the figure, the user
has selected the last node. Therefore, SWAN highlights
line 13 in the source file, showing the user that tainted data
reaches the function sink() as a parameter.

DESIGN GUIDELINES
In past research, Nguyen Quang Do et al.20 studied the
usage of static-analysis tools at Software AG, focusing
on code developers’ motivations for using the tools (e.g.,
working context, type of tool), their behavior when facing
common usability issues, and the strategies created in-
house to address those issues. Their research spans 17
analysis tools, 87 developers, and two large-scale projects,
and includes a developer survey and a study of the analysis
results and developer responses to those results for one
of those projects.

That study found that time constraints are the main
influence on how developers interact with static-analysis
tools and therefore also influence the strategies they
use to optimize their work. For example, to save time,
44 percent of the participants mark warnings as false
positives based on the type of issue without investigating
the warning further. Similarly, some participants ignore

5 of 23

acmqueue | july-august 2021 6

static analysis

or suppress a warning if they do not understand its
description. In both cases, a different UI might help
developers make better decisions (e.g., by providing
examples of similar warnings that were already resolved).

As a result, Nguyen Quang Do et al. define 10 guidelines
(referred to as G1–G10 in this article) on how to create UIs
for static-analysis tools that better support developers.
Those guidelines echo usability issues reported in former
studies, detailed later.

The following describes the guidelines and notes which
of them are applicable to SWAN.

G1 – Consider time constraints when designing
the UI processes
Nguyen Quang Do et al. found that participants mostly
use static-analysis tools during their spare time (e.g.,
between meetings), a finding echoed by Carmine Vassallo
et al.27 Since time constraints are the main motivator for
using static-analysis tools, all UI interactions must be
designed within this context. For example, the tool could
help developers determine how long a given warning
would take to fix and help them plan their work. SWAN’s
immediate analysis approach and tight integration into the
Swift development workflow may reduce the need for such
time-based warning metrics.

G2 – The analysis responsiveness and the tool interface
should be crafted to minimize wait times
Waiting for the warnings to update after submitting a fix
is one of the main reasons reported by the participants for
stopping their work with analysis tools. Because complex

6 of 23

P
articipants
mostly
use static-
analysis
tools during

their spare time.

acmqueue | july-august 2021 7

static analysis

analyses may take a long time to run, the fixing process
may be interrupted, splitting a fix over multiple debugging
sessions. This usability issue has also been reported as a
cause for workflow disruption.11,13,15 SWAN is being created
with responsiveness in mind. Its UI could be designed to
display and update immediate warnings, but this presents
challenges.

G3 – Feed the developer knowledge back into the analysis
The studies by Nguyen Quang Do et al.20 and Vassallo et
al.27 observed that programmers develop heuristics on
how to interpret analysis results. For example, Software
AG engineers built a knowledge of which API calls are not
handled well by the analysis, and they dismiss warnings
that contain such calls.20 Istehad Chowdhury and
Mohammad Zulkernine10 have shown that such analysis
weaknesses may help distinguish true from false positives.
As a result, Nguyen Quang Do et al. advocate for developer
knowledge to be fed back into the analysis so that it may
profit all other users. SWAN’s initial lack of API security
modeling can produce many false positives and false
negatives; there are steps developers can take in these
cases.

G4 – Provide specific warning explanations
As reported in past research, warning descriptions are
often generic and require domain-specific knowledge
of security vulnerabilities or of the project being
analyzed.6,11,13,15 This can make understanding warnings and
figuring out how to fix them a difficult task for developers.
Nguyen Quang Do et al.20 recommend making the warnings

7 of 23

acmqueue | july-august 2021 8

static analysis

as specific as possible to the particular piece of code that
is analyzed, and providinge explanations of what it means
in the context of the user (e.g., how difficult it would be to
fix and what kind of knowledge is required). Since SWAN
aims to accommodate all developers, including those with
limited technical experience, providing understandable
explanations will be essential for its adoption. SWAN
will initially have traditional explanations that contain
information such as category, severity, how the warning
can affect the code and how it can be exploited, and how
the warning can be fixed, at a high level. Later in this article
is a proposal for evaluating the effectiveness of SWAN’s
explanations.

G5 – Assist developers with recommendations
based on their knowledge
As mentioned in G4, fixing warnings requires specific
domain knowledge. Since analysis tools have access to
repair history, they are the ideal actor for recommending
specific warnings to specific developers, or recommending
past fixes for specific warnings, for example. SWAN first
needs to be tested with a large user base to increase
understanding how a knowledge-base system containing
past warnings, fixes, and developer information should be
developed and integrated. Therefore, this guideline falls
under future plans.

G6 – Provide collaboration options
In relation to G3 and G5, Nguyen Quang Do et al.20
recommend providing a platform for sharing developer
knowledge and for recommending developers who might

8 of 23

acmqueue | july-august 2021 9

static analysis

have the knowledge required to fix certain bugs. Like G5,
this guideline requires a knowledge base, discussed later in
this article.

G7 – Encourage good developer strategies
In their study, Nguyen Quang Do et al. observed strategies
in how they behave with regard to warnings. For example,
they create heuristics to distinguish true from false
positives, or they default to certain behavioral patterns with
warnings that they do not understand (e.g., ignore, escalate,
or suppress those warnings). The authors recommend
using the analysis knowledge and the collective developer
knowledge to encourage good strategies such as escalation
and discourage more dangerous strategies such as warning
suppression. SWAN first must be tested to determine
whether the previous guidelines are insufficient for
promoting good behavior. This guideline is discussed later in
the section on future plans.

G8 – Use different types of analysis tools to cover
different aspects
Since this is the responsibility of the analysis user, this
guideline is considered outside the scope of SWAN.

G9 – Use a single reporting platform for all warnings
Like G8, integrating different analysis tools is the
responsibility of the analysis user, and thus, G9 is also
outside the scope of SWAN. To facilitate the integration
work, however, the next iteration of SWAN may include an
export option in SARIF (Static Analysis Results Interchange
Format).1

9 of 23

acmqueue | july-august 2021 10

static analysis

G10 – Promote the usage of analysis tools via policy
enforcement and by spreading awareness
SWAN can provide a smooth integration into git, building,
and IDEs to make it easier to adopt, configure, and use.
This should make developers more willing to adopt SWAN,
which would also make enforcing its usage through
company policy easier. SWAN could also be shipped with
specific policy suggestions and advertising material to help
developers understand what SWAN offers them. A tool
cannot directly influence a company’s policies, however, so
G10 is outside the scope of this article.

SHORT-TERM DESIGN GOALS
Let’s now examine the immediately applicable usability
guidelines from the perspective of SWAN.

Time constraints
G1 – Developers have limited amounts of time. Importantly,
they have small time spans available to them between
tasks. This is when they are most willing to resolve
warnings.

Nguyen Quang Do et al. suggest, “the [analysis] tool can
propose suitable warnings to fix for a given time span [that
the developer can select].” In other words, the developer
selects a desired time span for fixing warnings (e.g., 15 or
30 minutes), and the analysis tool then provides a batch of
warnings to be fixed within that time span.

To accomplish this, a heuristic is needed to estimate
the time required to fix a given warning. This heuristic
should take into account several factors such as warning
complexity (e.g., how many files and methods it flows

10 of 23

A
heuristic
is needed
to estimate
the time
required

to fix a given
warning.

acmqueue | july-august 2021 11

static analysis

through), warning type, and developer experience. To
select the warnings efficiently, their priority (or severity)
must be balanced with the time it takes to fix them.
Developing this time-estimate heuristic would require
tuning it with empirical developer trials, which may be
included in future trials. Developing such a heuristic may
not be a priority if the emphasis on time constraints is
reduced by limiting upstream warnings through immediate
fixes.

SWAN will promote immediate fixes and limit how
many warnings appear upstream. The upstream state
will still be made available to view outstanding warnings.
Furthermore, SWAN is security focused, so any warnings
that arise should not be ignored, as is often the case with
general bugs or code style issues.

The nature of the Swift development workflow and
how SWAN integrates into the workflow through the
build system allow it to find warnings quickly while the
developer is actively working on the app. The number of
warnings that the developer has to fix while developing
is expected to be small enough that they can be fixed
immediately. Hence, the importance of addressing time
constraints may be greatly reduced in this regard.

There are two major ways, however, in which many
warnings can be introduced at once, and that may warrant
having time estimates. First, when the developer runs the
analysis on a codebase for the first time, SWAN will likely
issue many warnings that the developer will not be able to
resolve immediately. Second, whenever SWAN’s analysis
changes in a new release, it may produce many new
warnings because of new warning support. Future plans

11 of 23

acmqueue | july-august 2021 12

static analysis

include exploring how to evaluate whether and to what
extent SWAN will produce a backlog of warnings that the
developer will have to resolve with limited time. This will
help determine whether or not to pursue the development
of time heuristics.

Furthermore, while developers are working, they may
not want to resolve a warning immediately because they
are preoccupied and focused on coding. In this case, a time
estimate may also be helpful. A rough estimate would
likely be sufficient here. The SWAN UI could also provide a
convenient button that prompts a calendar event with the
warning information and time estimate, so that developers
can allocate time to resolve the warning later—hence,
immediately handling the warning rather than ignoring it.

The next steps in this research area would be to study
how developers use SWAN to determine which metrics
to incorporate into the time estimates. These metrics
can range from the developer’s experience with a given
type of warning, to the size of the codebase, to the time
of day. The influence of such metrics on the time estimate
could differ widely from one developer to another, but
since SWAN focuses on very specific code warnings, those
uncertainties could likely be restricted.

Responsiveness
G2 – Developers do not like waiting for analysis tools,
especially when they have time constraints. The analysis
responsiveness and the tool interface should be crafted to
minimize wait times.

Swift applications follow a module-based design, where
each user (non-package) module is usually small enough

12 of 23

acmqueue | july-august 2021 13

static analysis

that it can be quickly analyzed by SWAN. The user’s code
may be distributed across multiple modules, and all
packages are included as modules.

Swift libraries are not distributed in binary form and can
therefore be analyzed by SWAN along with the user code.
SWAN’s new infrastructure is being designed to handle
these modules individually and to link them together
automatically. Therefore, upon rebuilding, SWAN does
not need to reanalyze all modules and will process only
the changed module(s). SWAN will then link them with the
cached modules from the previous build to have complete
data flow information. With this design, SWAN provides
fast iterative analysis for each subsequent build.

Regarding the UI, SWAN aims to provide immediate
feedback while developers are working. The lightweight
analysis will run every time they build their applications,
and they should receive warning change notifications
inside their IDEs. Not all IDEs provide plug-in support,
however.2 Therefore, plug-ins should not be considered a
means of creating SWAN’s primary UI, but the goal is to
implement IDE integrations that at least notify the user
of new warnings. Detailed warning information will be
available in SWAN’s dedicated (primary) UI, which will be
either a desktop or a web-based application.

Developers should easily be able to tell what effect
their changes have on the current list of warnings—that
is, if their changes resolved or introduced warnings.
SWAN can provide multiple lists in the dedicated UI to
help developers understand their changes: warnings that
differ from the latest commit (similar to git) and warnings
that differ from the previous build, including the state

13 of 23

acmqueue | july-august 2021 14

static analysis

of warnings at each previous build. The IDE notifications
mentioned earlier could similarly be configured to display
changes from the latest commit or build. Part of the
future work on SWAN’s UI will endeavor to design and
test different features that can display realtime updates
without confusing the user. This system is discussed
further in relation to encouraging good behavior and its
evaluation in the section on future plans for SWAN.

Customizable heuristics
G3 – Developers should be able to configure the analysis
tool with their own rules or heuristics to adapt it to their
needs when necessary.

Swift developers use various packages (i.e., libraries
or APIs). One major advantage of the Swift build system
is that all non-Apple/proprietary packages are included
with the source code. This means that basic data flow
through these packages does not have to be modeled
but their security behavior does. Because SWAN does
not currently have the resources to support all common
APIs, some security information is missing, such as which
API methods are sources, sinks, or sanitizers. Before its
release, however, SWAN will at least have modeled the
Swift Standard Library.

Inevitably, developers will find that some warnings are
false positives (e.g., when a sanitizer is missing) or false
negatives (e.g., when a source or sink is missing). SWAN
will provide two ways that developers can simultaneously
adapt their local analysis to minimize those incorrect
warnings and notify the developers of SWAN of incorrect
behavior.

14 of 23

acmqueue | july-august 2021 15

static analysis

First, in the case of a false negative, developers can
create a short report about missing behavior, including the
API method in question, its correct behavior (source, sink,
or sanitizer), and optionally a short description. This will
automatically give that API method the desired behavior
in the analysis engine and send a report to the SWAN
developers.

Second, they can create a similar report about a specific
warning, but in this case more report information will
automatically be provided. No user code will be included
in the reports that are sent to the SWAN developers.
Through these options, developers may continue to use
SWAN without suppressing warnings, and the SWAN
team can adapt SWAN to have better support in the next
release.

With this report data, the SWAN developers can build a
substantial knowledge base of the developers’ heuristics.
Once those heuristics are categorized, SWAN’s initial bug-
reporting system can be improved with a more detailed
UI for software engineers to input different types of
heuristics, and for those heuristics to be automatically
fed back into the analysis engine. This will require further
research in how and when the different types of heuristics
should influence the analysis engine.

DISCUSSION AND FUTURE PLANS
While some design guidelines are immediately applicable
to SWAN, others are not. This section addresses the latter
set, as well as future plans for evaluating SWAN’s usability.

15 of 23

acmqueue | july-august 2021 16

static analysis

Warning backlog
SWAN focuses on minimizing the number of warnings
that developers do not resolve immediately by tightly
integrating into their workflow and providing easy ways
to understand the warnings their changes cause. Many
warnings, however, may suddenly be introduced that
the developer will have to work through eventually. The
SWAN team needs to evaluate if and to what extend this
is the case. It may turn out that once a developer has fixed
the initial set of warnings, there is rarely a need to use
time estimates (G1), recommender (G5), or collaboration
(G6) systems. This would reduce the relevance of these
guidelines to SWAN. Warning explanations (G4) can also
play a big part in helping developers immediately resolve
warnings. Therefore, in future trials the SWAN developers
plan to analyze how many warnings are left unresolved and
what part the warning explanations play in this outcome.

Encouraging good behavior
The previous section on G2 discussed IDE warning
notifications that appear as the developer is working in
order to increase responsiveness. This is a critical moment
when the developer decides whether or not to address a
warning. Therefore, it is essential that developers do not
ignore important warnings (we think all security warnings
are important) and have clear information to help them
resolve the warnings. Time estimates and good warning
explanations can help achieve this, but this may not be
sufficient, so other ways to encourage good behavior
(G7) should be explored. For example, SWAN focuses on
security and will produce many warnings that can quickly

16 of 23

acmqueue | july-august 2021 17

static analysis

be resolved by passing data through a sanitizing API. “Quick
fix” options could be possible for these warnings, although
lack of IDE plug-in support could make this difficult. SWAN
trials could help evaluate if and why developers do not
immediately resolve warnings and lead to determining
which strategies can be improved or added to encourage
good behavior.

Knowledge base
The following guidelines require SWAN to have a
knowledge base that contains information such as past
warnings, fixes, and developer information. Before such
a system is developed, SWAN must be tested with a
significant user base to find what data is available to
record and use.

G5 – Warning messages and recommender systems should
consider developer knowledge and time available.

Personalized warning messages may help developers
resolve warnings more efficiently. As previously
mentioned, developer knowledge should be considered
when calculating warning-time estimates, which are
included in warning messages. Furthermore, a warning
message should suggest people who can help the
developer resolve the warning, such as teammates.
The message should recommend developers who have
experience resolving similar warnings, have worked on the
sections of the codebase through which the warning flows,
or have self-identified as experts in a particular warning
type or category.

17 of 23

A
warning
message
should
suggest
people

who can help the
developer resolve
the warning.

acmqueue | july-august 2021 18

static analysis

G6 – Users should have methods of collaborating to
resolve warnings, such as through a messaging system
where they can communicate about specific warnings.

The UI should provide a means of communicating about
warnings, such as a chat system. It should provide a way to
start a conversation about a warning, and the developer
should then be able to tag suggested developers for
help. An archive of these conversations should be made
available to all developers so they can read through
previous conversations about a warning they have been
assigned before seeking help. A conversation archive could
also later provide insight into what warnings developers
most struggle with (seek help for), what specifically
developers do not understand, and how quickly they
receive help, in order to improve the tool’s usability. A quick
link to related conversations should be included in the
warning message.

Future user studies
To evaluate the next generation of the SWAN UI, the
team plans to conduct several user studies. In particular,
identifying integration points in developer workflows will
help in understanding how to automate analysis tools
and minimize interference. Additionally, exploring UI
design and layout in depth, with specific examples from
industry static-analysis tool UIs, will help in designing the
new SWAN UI. Combined with Nguyen Quang Do et al.’s
work, future usability studies will provide a well-rounded
understanding of SWAN.

18 of 23

acmqueue | july-august 2021 19

static analysis

References
1. �Anderson, P. 2018. Static analysis results: a format and a

protocol: SARIF & SASP. GrammaTech Blog; https://blogs.
grammatech.com/static-analysis-results-a-format-and-
a-protocol-sarif-sasp.

2. �Apple Developer. 2021. Xcode; https://developer.apple.
com/xcode/.

3. �Apple iOS Team. 2007. iOS 14; https://www.apple.com/ca/
ios/.

4. �Apple macOS Team. 2001. macOS Big Sur; https://www.
apple.com/ca/macos/mojave/.

5. �Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A.,
Klein, J., Le Traon, Y., Octeau, D., McDaniel, P. D. 2014.
FlowDroid: precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for Android apps. In
Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI), 259–269; https://doi.org/10.1145/2594291.2594299.

6. �Ayewah, N., Pugh, W., Hovemeyer, D., Morgenthaler, J.
D., Penix, J.,2008. Using static analysis to find bugs.
IEEE Software 25(5), 22–29; https://doi.org/10.1109/
MS.2008.130.

7. �Ayewah, N., Pugh, W. 2008. A report on a survey and
study of static analysis users. In Proceedings of the
Workshop on Defects in Large Software Systems;
https://doi.org/10.1145/1390817.1390819.

8. �Azim, T., Neamtiu, J. 2013. Targeted and depth-first
exploration for systematic testing of Android apps.
In Proceedings of the ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages
and Applications (OOPSLA), ed. A. L. Hosking, P.

19 of 23

https://blogs.grammatech.com/static-analysis-results-a-format-and-a-protocol-sarif-sasp
https://blogs.grammatech.com/static-analysis-results-a-format-and-a-protocol-sarif-sasp
https://blogs.grammatech.com/static-analysis-results-a-format-and-a-protocol-sarif-sasp
mailto:feedback%40queue.acm.org?subject=
mailto:feedback%40queue.acm.org?subject=
https://www.apple.com/ca/ios/
https://www.apple.com/ca/ios/
https://www.apple.com/ca/ios/
https://www.apple.com/ca/macos/mojave/
https://www.apple.com/ca/macos/mojave/
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1109/MS.2008.130
https://doi.org/10.1109/MS.2008.130
https://doi.org/10.1145/1390817.1390819

acmqueue | july-august 2021 20

static analysis

Th. Eugster, and C. V. Lopes, 641–660; https://doi.
org/10.1145/2509136.2509549.

9. �Bessey, A., Block, K., Chelf, B., Chou, A., Fulton, B.,
Hallem, S., Henri-Gros, C., Kamsky, A., McPeak, S.,
Engler, D. 2010. A few billion lines of code later: using
static analysis to find bugs in the real world.
Communications of the ACM 53(2), 66–75;
https://doi.org/10.1145/1646353.1646374.

10. �Chowdhury, I., Zulkernine, M. 2010. Can complexity,
coupling, and cohesion metrics be used as early
indicators of vulnerabilities? In Proceedings of the ACM
Symposium on Applied Computing, 1963–1969;
https://doi.org/10.1145/1774088.1774504.

11. �Christakis, M., Bird, C. 2016. What developers want
and need from program analysis: an empirical study.
In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering, 332–
343; https://doi.org/10.1145/2970276.2970347.

12. �Huang, W., Dong, Y., Milanova, A., Dolby, J. 2015. Scalable
and precise taint analysis for Android. In Proceedings
of the International Symposium on Software Testing
and Analysis, ed. M. Young and T. Xi, 106–117;
https://doi.org/10.1145/2771783.2771803.

13. �Johnson, B., Song, Y., Murphy-Hill, E., Bowdidge, R. 2013.
Why don’t software developers use static analysis
tools to find bugs? In Proceedings of the International
Conference on Software Engineering, 672–681; https://
dl.acm.org/doi/10.5555/2486788.2486877.

14. �Kersten, M., Murphy, G. C. 2006. Using task context
to improve programmer productivity. In Proceedings
of the 14th ACM SIGSOFT International Symposium on

20 of 23

https://doi.org/10.1145/2509136.2509549
https://doi.org/10.1145/2509136.2509549
https://doi.org/10.1145/1646353.1646374
https://doi.org/10.1145/1774088.1774504
https://doi.org/10.1145/2970276.2970347
https://doi.org/10.1145/2771783.2771803
https://doi.org/10.1145/2771783.2771803
https://dl.acm.org/doi/10.5555/2486788.2486877
https://dl.acm.org/doi/10.5555/2486788.2486877

acmqueue | july-august 2021 21

static analysis

Foundations of Software Engineering, 1–11; https://doi.
org/10.1145/1181775.1181777.

15. �Lewis, C., Lin, Z., Sadowski, C., Zhu, X., Ou, R., Whitehead,
E. J. 2013. Does bug prediction support human
developers? Findings from a Google case study. In 35th
International Conference on Software Engineering, 372–
381. IEEE; https://doi.org/10.1109/ICSE.2013.6606583.

16. �LLVM Developer Group. 2003. The LLVM compiler
infrastructure; https://llvm.org/.

17. �LLVM Developer Group. 2007. Clang: a C language
family front end for LLVM; https://clang.llvm.org/.

18. �Nguyen Quang Do, L. 2019. User-centered tool design
for data-flow analysis. Ph.D. dissertation. Paderborn
University; https://doi.org/10.17619/UNIPB/1-820.

19. �Nguyen Quang Do, L., Ali, K., Livshits, B., Bodden, E.,
Smith, J., Murphy-Hill, E. R. 2017. Just-in-time
static analysis. In Proceedings of the 26th
ACM SIGSOFT International Symposium on
Software Testing and Analysis. 307–317;
https://doi.org/10.1145/3092703.3092705.

20. �Nguyen Quang Do, L., Wright, J. R., Ali, K. 2020. Why do
software developers use static analysis tools? A user-
centered study of developer needs and motivations.
IEEE Transactions on Software Engineering (June 24).
IEEE; https://ieeexplore.ieee.org/document/9124719.

21. �StatCounter GlobalStats. 2019. Desktop operating
system market share worldwide; https://gs.statcounter.
com/os-market-share/ desktop/worldwide/#month
ly-201901-201912.

22. �StatCounter GlobalStats. 2019. Mobile operating
system market share worldwide; https://gs.statcounter.

21 of 23

https://doi.org/10.1145/1181775.1181777
https://doi.org/10.1145/1181775.1181777
https://doi.org/10.1109/ICSE.2013.6606583
https://llvm.org/
https://clang.llvm.org/
https://doi.org/10.17619/UNIPB/1-820
https://doi.org/10.1145/3092703.3092705
https://doi.org/10.1145/3092703.3092705
https://ieeexplore.ieee.org/document/9124719
https://gs.statcounter.com/os-market-share/ desktop/worldwide/#monthly-201901-201912
https://gs.statcounter.com/os-market-share/ desktop/worldwide/#monthly-201901-201912
https://gs.statcounter.com/os-market-share/ desktop/worldwide/#monthly-201901-201912
https://gs.statcounter.com/os-market-share/ mobile/worldwide/#monthly-201901-201912

acmqueue | july-august 2021 22

static analysis

com/os-market-share/ mobile/worldwide/#month
ly-201901-201912.

23. �Swift. 2015. The Swift Programming Language;
https://swift.org/.

24. �SwiftLint. 2015. A tool to enforce Swift style and
conventions. GitHub; https://github.com/realm/
SwiftLint.

25. �Tailor. 2015. Cross-platform static analyzer and linter
for Swift. GitHub; https://github.com/sleekbyte/tailor.

26. �Tiganov, D., Cho, J., Ali, K., Dolby, J. 2020. SWAN: A static
analysis framework for Swift. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations
of Software Engineering, 1640–1644; https://doi.
org/10.1145/3368089.3417924

27. �Vassallo, C., Panichella, S., Palomba, F., Proksch,
S., Zaidman, A., Gall, H. C. 2018. Context is king: the
developer perspective on the usage of static analysis
tools. In IEEE 25th International Conference on Software
Analysis, Evolution and Reengineering, 38–49. IEEE;
https://doi.org/10.1109/SANER.2018.8330195.

28. �Visual Studio. 2015. Visual Studio Code – Code editing.
Redefined; https://code.visualstudio.com.

Daniil Tiganov is a computing science student at the
University of Alberta. He is the main contributor to the SWAN
project.

Lisa Nguyen Quang Do is a software engineer at Google
Zurich. She received her PhD degree at Paderborn University
in 2019. Her research focuses on improving the usability of

22 of 23

https://gs.statcounter.com/os-market-share/ mobile/worldwide/#monthly-201901-201912
https://gs.statcounter.com/os-market-share/ mobile/worldwide/#monthly-201901-201912
https://swift.org/
https://github.com/realm/SwiftLint
https://github.com/realm/SwiftLint
https://github.com/sleekbyte/tailor
https://doi.org/10.1145/3368089.3417924
https://doi.org/10.1145/3368089.3417924
https://doi.org/10.1109/SANER.2018.8330195
https://code.visualstudio.com/

acmqueue | july-august 2021 23

static analysis

analysis tools for code developers and analysis developers
through different aspects ranging from the optimization of the
analysis algorithm to the implementation of its framework to
the usability of its interface.

Karim Ali is an Assistant Professor in the Department of
Computing Science at the University of Alberta. Prior to that,
he was a postdoctoral researcher at Technische Universität
Darmstadt, Germany within the Secure Software Engineering
(SSE) Group led by Eric Bodden. He finished his Ph.D. studies
under Ondrej Lhoták in the Programming Languages Group at
the University of Waterloo.
Copyright © 2021 held by owner/author. Publication rights licensed to ACM.

23 of 23

