
Codebase-Adaptive Detection

of Security-Relevant Methods

Technical Report
tr-ri-19-356

Goran Piskachev, Lisa Nguyen Quang Do, Eric Bodden

Paderborn, February 28, 2019



Codebase-Adaptive Detection of Security-Relevant Methods
Goran Piskachev
Fraunhofer IEM

Germany
goran.piskachev@iem.fraunhofer.de

Lisa Nguyen Quang Do
Paderborn University

Germany
lisa.nguyen@upb.de

Eric Bodden
Paderborn University and Fraunhofer

IEM
Germany

eric.bodden@upb.de

ABSTRACT

More and more companies use static analysis to perform regular
code reviews to detect security vulnerabilities in their code, config-
uring them to detect various types of bugs and vulnerabilities such
as the SANS top 25 or the OWASP top 10. For such analyses to be
as precise as possible, they must be adapted to the code base they
scan. The particular challenge we address in this paper is to provide
analyses with the correct security-relevant methods (Srm): sources,
sinks, etc. We present SWAN, a fully-automated machine-learning
approach to detect sources, sinks, validators, and authentication
methods for Java programs. SWAN further classifies the Srm into
specific vulnerability classes of the SANS top 25. To further adapt
the lists detected by SWAN to the code base and to improve its
precision, we also introduce SWANAssist, an extension to SWAN
that allows analysis users to refine the classifications. On twelve
popular Java frameworks, SWAN achieves an average precision of
0.826, which is better or comparable to existing approaches. Our
experiments show that SWANAssist requires a relatively low effort
from the developer to significantly improve its precision.

CCS CONCEPTS

• Security and privacy → Software security engineering; •
Computing methodologies → Machine learning approaches; •
Software and its engineering → Software verification and vali-

dation; •Human-centered computing→ Interaction design pro-
cess and methods.

KEYWORDS

Program Analysis, Machine-learning, Java Security

1 INTRODUCTION

Nearly two thirds of security vulnerabilities are caused by simple
repetitive programming errors [29]. To ensure the security of their
software, more and more companies enforce regular code reviews.
Because of the large scale of the code bases produced every day,
purely manual reviews are expensive—often prohibitively so. To
assist in detecting vulnerabilities, more and more companies use
static analysis, a method of reasoning about a program’s runtime
behaviour from the source code, without running it [27, 43, 49]. A
large range of static analysis tools supports the detection of security
vulnerabilities such as the SANS top 25 [18] or the OWASP top
10 [42]. Taint analysis in particular, can detect code injections [21]
or privacy leaks [20]. Typestate analysis can be used to detect mis-
authentications [19], API misuses, etc.

In general, such analyses can find a vast array of security vulner-
abilities. But to do so effectively, the analysis tool must be correctly
configured. In particular, analysis users must configure the tools

with lists of security-relevant methods (Srm) that are relevant to
their development context. Srm are methods of the analyzed pro-
gram or from application interfaces (APIs) they use, that change the
state of the analysis. For example, a call to getParameter() of class
javax.ServletRequest notifies a taint analysis that a potentially
user-controlled piece of information enters the program. Likewise,
a call to the Java Spring AuthenticationProvider’s authenticate()
can signal a new authentication status to a typestate analysis.

Lists of Srm are generally created manually by the analysis
writers, and in larger companies, are often refined by dedicated
security teams through manual work. This is important, as even
lists used in commercial tools can be incomplete and thus, cause
the analyses to miss vulnerabilities or to signal false positives. For
instance, a previous study by Arzt et al. showed that, in the past,
static analysis tools have frequently missed a large majority of
relevant findings due to insufficient configurations [10]. In their
work, Arzt et al. presented Susi, an automated machine-learning
approach for the detection of two types of Srm (sources and sinks)
in the Android framework. While the resulting list allows taint
analyses to detect more privacy leaks more accurately, it is can be
used in one case only: the detection of injections and privacy leaks
in Android applications. In later work, Sas et al. [44] extend Susi to
detect sources and sinks to general Java programs. Both approaches
are run ahead of time, before the analysis is deployed.

This paper presents SWAN (Security methods for WeAkNess
detection), an approach that directly aids analysis users in detect-
ing Srm in both their code and the libraries they use. Compared to
earlier work, SWAN detects two additional types of Srm: validators
and authentication methods. This allows analyses to detect more
types of vulnerabilities with a higher precision. In addition, SWAN
provides more granularity in the Srm lists, as it is able to differ-
entiate between different vulnerability types in terms of CWEs
(Common Weakness Enumerations) [22].

We also extend SWAN to take user feedback into account, allow-
ing developers to adapt SWAN to the code base under analysis at
debug time. This allows developers to train the analysis on their
own code, thereby significantly improving the list of Srm, and
therefore, optimizing the signal-to-noise ratio of the analysis of
their code base. Our extension SWANAssist is implemented as an
IntelliJ plugin that allows code developers to mark Srm in their
own code.

We used SWAN to generate Srm lists for twelve popular Java
frameworks used for web and mobile development, and home au-
tomation: Android [24], Apache Cordova [4], Apache Struts [7],
Dropwizard [13], GWT [26], Spark [31], Spring [45], Jetty [15],
Apache Stratos [6], Apache Lucene [5], Eclipse SmartHome [16],
and Apache Commons [3]. In a 10-fold cross-validation, SWAN
achieves a median precision of 0.826 over all frameworks when



classifying Srm. Our experiments show that the lists generated by
SWAN are sometimes similarly and sometimes more precise than
lists from current approaches such as Susi [10], JoanAudit [50], and
Sas et al’s [44]. Moreover, we show that SWANAssist can signifi-
cantly improve SWAN’s precision by asking the user to manually
label only small portion of the codebase’s methods.

The main contributions of this paper are:

• SWAN, an approach for the detection of Srm in Java projects:
sources, sinks, validators and authentication methods, and
their refinement in CWE classes.
• SWANAssist, an IntelliJ plugin that allows code developers
to customize the lists of Srm using SWAN.
• Srm lists generated for twelve popular Java frameworks.
• The manually refined training set used to detect Srm on
those frameworks.
• An evaluation of SWAN’s precision on the twelve Java frame-
works, and a comparison against existing approaches.
• An evaluation method for measuring the effort required by
the developer to use SWANAssist effectively.

Our implementation and datasets are available online [1]. We
next explain the requirements for building a machine-learning
based detection approach for Srm. Section 3 explains the design
of our automated classification approach SWAN, and Section 4
the developer-assisted extension SWANAssist. We discuss our eval-
uation and its results in Section 5, followed by a discussion of
limitations and future work, related work and our conclusions.

2 REQUIREMENTS FOR THE MACHINE-

LEARNING BASED DISCOVERY OF SRM

Table 1 presents the list of the SANS top 25 most dangerous and
widespread software errors that can lead to security vulnerabilities.
The detection of most of those issues can be done via static data-
flow analysis. For example, in Listing 1, the variable userId at
line 3 is assigned a user-controlled (and thus potentially attacker-
controlled) value and should therefore be marked as dangerous.
This value flows through the program and is used to execute an
SQL query (line 7), which can result in an SQL injection (CWE-

89). This same value is used to create a URL to which the user is
redirected (line 9), potentially causing an Open Redirect (CWE-601).
To avoid those two vulnerabilities, one possibility is to introduce a
validator (line 4), which ensures that the input is valid and in the
correct format.

To detect SANS 25 problems, data-flow analyses need to be aware
of critical points in the program that influence the computation of
the analysis: the Srm. In our case, those are sources, i.e., methods
which create the data that should be tracked (e.g., getParameter()
line 3), sinks, i.e., methods at which the analysis should raise an
alarm (e.g., executeQuery() at line 7 and sendRedirect() at
line 9), validators, i.e., methods at which the data becomes safe
and should no longer be tracked (e.g., encodeForSQL() at line 4).
In addition, authentication methods change the state of the pro-
gram from safe to unsafe or vice-versa (needed for CWE-306 and
CWE-862). Supporting the SANS top 25 thus yields the following
requirement for Srm lists.

1 protected void doGet(HttpServletRequest request ,

HttpServletResponse response) throws
ServletException , IOException {

2 try {

3 String userId = request.getParameter('userId ');

4 userId = ESAPI.encoder ().encodeForSQL(new
MySQLCodec (), userId);

5 Statement st = conn.createStatement ();

6 String query = "SELECT * FROM User WHERE

userId='" + userId + " ';";

7 ResultSet res = st.executeQuery(query);

8 String url = "https ://" +userId+ ".company.com";

9 response.sendRedirect(url);

10 } catch (Exception e) { ... }

11 }

Listing 1: Potential SQL injection (from l.3 to l.7) and open

redirect (from l.3 to l.9).

R1 Srm should differentiate between sources, sinks, val-
idators and authentication methods.

When analyzing a program, the choice of Srm can heavily in-
fluence the outcomes of the analysis. For example, configuring an
analysis with executeQuery() as a sink would make it detect SQL
injections. Configuring the same analysis with sendRedirect()
would make it detect Open Redirects. This is further illustrated in
Table 1 where we detail the types of methods considered as sources,
sinks and validation methods for each of the CWEs. For example,
in CWE-798 (Use of Hard-coded Credentials), all new objects of
type String are considered sources (since any new String could be
initialized with a credential), all uses of that String are considered
sinks, and methods that anonymize the String are considered val-
idators (as they remove the confidential information). In CWE-306

(Missing Authentication for Critical Function), methods requiring
prior authentication are considered sinks, since as soon as they are
reached without proper authentication, the analysis should return
an error. Authentication methods are thus considered validators,
unlike in CWE-89 (SQL Injection) where validators are typically
String sanitizers. This shows that Srm are vulnerability-type spe-
cific. An analysis configured with the wrong sets of Srm can easily
cause false positives and negatives, yielding what practitioners tend
to call a “bad signal”. To improve the signal-to-noise ration, and to
aid in the categorization of the analysis warnings, it is therefore
important to relate the Srm to each CWE.

R2 Srm lists should be specific to each CWE.

In past work, Srm have been extracted from particular libraries
and frameworks. Susi for example, lists all sources and sinks from
the Android framework. However, this overlooks Srm in other
third-party libraries and in the source code itself. External Srm like
encodeForSQL() in Listing 1 or custom methods defined in the
source code will be overlooked by an off-the-shelf Srm list. When
analyzing a program, it is thus important to consider all libraries
and frameworks it uses, but also its methods as potential Srm.

R3 Srm lists should be specific to the code base.

The Java Spring framework contains more than 30 000 meth-
ods [45]. Considering that a reasonably-sized program uses multiple

2



Table 1: List of the SANS top 25 CWE [18], and a description of the Srm required to detect them using data-flow analysis. CWE-
120 and CWE-131 cannot happen in Java: exceptions are triggered before the issues are exploitable. CWE-863 and CWE-307
happen on the conceptual level, and should be detected at design time instead.

CWE Description Source Validator Sink
CWE-89 SQL Injection External Code sanitization SQL execution
CWE-78 OS Command Injection External Code sanitization Execution
CWE-120 Classic Buffer Overflow N/A N/A N/A
CWE-79 Cross-site Scripting External Code sanitization Save / Execution / Print
CWE-306 Missing Authentication for Critical Function Entry point Authentication Critical function
CWE-862 Missing Authorization Entry point Authentication function Critical function
CWE-798 Use of Hard-coded Credentials New string Anonymization Send / Save / Execute
CWE-311 Missing Encryption of Sensitive Data External Encryption Execution
CWE-434 Unrestricted Upload of File with Dangerous Type External / New string Type check Load
CWE-807 Reliance on Untrusted Inputs in a Security Decision External Code sanitization / Sanity check Security function
CWE-250 Execution with Unnecessary Privileges External / New object Object sanitization Execution function
CWE-352 Cross-Site Request Forgery External Code sanitization Save / Execution / Print
CWE-22 Path Traversal External Path sanitization File operation
CWE-494 Download of Code Without Integrity Check External / New string Integrity check Load
CWE-863 Incorrect Authorization Entry point Incorrect authorization method Critical function
CWE-829 Inclusion of Functionality from Untrusted Control Sphere External / New string Input sanitization Load
CWE-732 Incorrect Permission Assignment for Critical Resource External / New object Object sanitization Execution function
CWE-676 Use of Potentially Dangerous Function External / New object Object sanitization Dangerous function
CWE-327 Use of a Broken or Risky Cryptographic Algorithm External / New object Object sanitization Cryptographic API
CWE-131 Incorrect Calculation of Buffer Size N/A N/A N/A
CWE-307 Improper Restriction of Excessive Authentication Attempts N/A N/A N/A
CWE-601 Open Redirect External URL sanitization URL access
CWE-134 Uncontrolled Format String External Execution with format Execution without format
CWE-190 Integer Overflow or Wraparound External / New integer Value test Operation on integer
CWE-759 Use of a One-Way Hash without a Salt Hashing function Hashing function with salt Hashing function

such libraries, it is infeasible to create a complete list of Srm manu-
ally. Therefore, it is necessary to compute Srm automatically. Fig-
ure 1 presents a high-level workflow of SWAN, our automated Srm
detection approach, and SWANAssist, our extension that queries
the analysis user to increase the precision of the generated lists of
Srm. SWAN is a classical supervised machine-learning approach,
initialized with a training set of classified methods from general
Java libraries. Compared to Susi, SWAN supports Java libraries,
and therefore contains a broader set of features and initial training
inputs. We expand more on this choice in Section 3. To compensate
for the high number of Srm yielded by such a general approach,
SWAN additionally classifies the Srm into CWEs, and further al-
lows the analysis user to tune SWAN with SWANAssist (dashed
and dotted lines), in a reinforcement learning approach.

R4 The detection of Srm should be automated but R5 it
should also involve the code developer.

Of the five requirements, Susi and Sas et al.’s approach meet
R4 and part of R1. In the following sections, we extend Susi into
SWAN and SWANAssist, and answer all requirements.

3 SWAN: SECURITY METHODS FOR

WEAKNESS DETECTION

In this section, we present SWAN, a machine-learning classification
approach for detecting Srm in Java programs and their libraries.

3.1 General Architecture

SWAN runs the automated classification shown in the lower part
of Figure 1 twice: in the first iteration, it classifies all methods of
the analyzed program and libraries into general Srm classes (R1):
sources (So), sinks (Si), sanitizers (Sa), one of the three types of
authentication methods detailed below, or none of the above. In the
second iteration, it discards the methods marked with none, and
classifies the remaining Srm into the individual CWEs (R2). This is
done to avoid classifying non-Srm methods as CWE-relevant.

In the first iteration, SWAN runs a set of four classifications,
one for each type of Srm. Since those four sets are not disjoint
(e.g., getContent() can be both a source and a sink), the classifi-
cations are run independently. For sources, sinks, and sanitizers,
the classifications are binary, e.g., for the sources, each method is
classified in one of the two classes: source or not source. In the case
of authentication methods, Srm are typically distributed between
four disjoint classes: auth-safe-state (Ass), auth-unsafe-state (Aus),
auth-no-change (Anc), and none. The first one refers to authenti-
cation methods that elevate the privileges of the user, e.g., login
methods. The second contains methods that lower those privileges
(e.g., logout methods). The third category marks methods that do
not change the state of the program (e.g., isAuthenticated()).
Although exceptions are not rare, in most cases seen in our data
sets, Ass and Aus tend to be disjoint. In addition, the two types of
authentication methods are semantically very similar. As a result,
running three different binary classifications yields a significantly
lower precision and recall than a single classification with both

3



Table 2: Classification of the methods of Listing 1 into the

categories (Sources (So), Sinks (Si), Sanitizers (Sa), the three

types ofAuthenticationmethods (Ass, Aus andAnc), and the

six supported CWE).

Srm CWE
So Si Sa Ass Aus Anc 78 79 89 306 601 862 863

getParameter X X X X
encodeForSQL X X
createStatement
executeQuery X X
sendRedirect X X

Training
set

Features

Test set

Training
data

Test
data

Classifier Srm lists

Web API

Maven

Git

AndroZoo

npm

Crawler

Command-Line 
InterfaceIndex

Web 
Application

train
classifier

classify
methods

most impactful methods

SWAN
SWANAssist

Figure 1: Machine-Learning Approach used in SWAN (solid

edges), including the developer’s feedback (angled dotted

edge - manual action), and the assisted detection of impact-

ful methods (straight dashed edge - automatic action).

classes. Auc was thus introduced to reduce the number of such
methods being classified unto Ass and Aus.

In the second iteration of the classification, the training set is kept
the same, but the methods that were not classified in any of the Srm
classes are removed from the test set. A binary classification is run
for each CWE. Currently, SWAN supports seven CWEs: CWE-78,
CWE-79, CWE-89, CWE-306, CWE-601, CWE-862, and CWE-863.

Table 2 shows the classification of the methods from List-
ing 1 into the different categories after running SWAN. As
expected, getParameter() is classified as a source for injec-
tion vulnerabilities (CWE-78 and CWE-89) and open redirect
(CWE-601), executeQuery() is classified as a sink for CWE-

89, sendRedirect() is classified as a sink for CWE-601, and
encodeForSQL() is found to be a sanitizer for CWE-89.

3.2 Features and Training Data

To help the machine-learning algorithm classify the methods into
the different classes, SWAN uses a set of binary features that eval-
uate certain properties of the methods. For example, the feature
instance methodClassContainsOAuth is more likely to indicate
an authentication method than any other type of Srm. As a first
phase to the learning, SWAN constructs an evaluation matrix by
computing a true/false result for each feature instance on each
method of the training set. This matrix is then used to learn which

combination of features best characterizes the classes, and uses this
knowledge to classify the methods of the testing set, after creating
the evaluation matrix for that set.

We have identified 25 feature types, instantiated as 206 concrete
features, to be relevant for SWAN. We call feature types generic fea-
tures such as methodClassContains and feature instance their con-
crete instances (e.g., methodClassContainsOAuth). Table 3 shows
the list of feature types in SWAN and their number of concrete
instances. Overall, 15 feature types, and only 18 feature instances
of SWAN, are derived from Susi, where 10 feature types and 188
feature instances have been added to complete the approach, and
make it compliant with R1–R5. To ensure a good selection of the
new feature instances, we manually selected Srm methods from
the Spring framework and created feature instances that comply
the methods’ characteristics.

Compared to Susi, SWAN contains more general features. For
instance, SWAN does not contain Android-specific features such
as Required Permission. On the other hand, SWAN contains
more features based on method and class names such as F03, F04,
F10, F14, F15, or F16. This is due to the Java naming conventions
followed in major libraries, which make functionalities explanatory
through naming. Those features are particularly useful for the
classification in CWEs, as both method/class names and CWEs
are human-defined concepts and match in their descriptions. For
example, a call to a database library is made, or when the method
is called "query", this can likely denote an SQL injection (CWE-89).

SWAN features also support access control to methods: Srm are
more likely to be publicly accessible, so whether the method is
public, private, protected, contained in an anonymous class, or
an inner class are covered in F01, F02, and F08, and are used to
differentiate between potential Srm and other methods. SWAN
also dedicates features to parameter and return types like F21, F23,
or F25, which can help differentiate between different types of
Srm (e.g., void methods are less likely to be sources), and between
different types of CWE (e.g., Open redirects (CWE-601) most likely
take Strings or URLs as inputs.

Other features in SWAN aim at removing false positives, e.g., F11
which helps distinguish constructors from sources, since they both
return potentially sensitive data. Data-flow specific features (e.g.,
F19, F20, F24) also serve this purpose, refining the classifications
with more information such as whether a parameter flows to the
return value (potentially indicating a sanitizer), or if a parameter
flows to a method call (denoting a potential sink).

SWAN’s features further aim to recognize sanitizers and
authentication methods. For example, some instances of F14

are dedicated to sanitizer detection: MethodNameContainsSanit,
or MethodNameContainsReplac. Similarly, F19 finds meth-
ods that transform a parameter into a return value. In
combination with the instance of F18 applied to Strings
(ParameterContainsTypeString), this covers the most typical
type of sanitizer which replaces sensitive data, or strips dangerous
characters in a String. Feature instances have also been created with
the three types of authentication methods in mind. Authentication
methods are mainly determined through their names or the names
of their declaring classes, so they are targeted through instances
of F03 and F10, and F14 such as methodNameContainsLogin, or
methodClassContainsOAuth.

4



Table 3: Feature types of SWAN, and their total number of

instances (#I) used within all classifications in SWAN.

Feature #I Feature #I
F01 IsImplicitMethod 1 F14 MethodNameStartsWith 9
F02 AnonymousClass 1 F15 MethodNameEquals 3
F03 ClassContainsName 36 F16 MethodNameContains 46
F04 ClassEndsWithName 3 F17 ReturnsConstant 1
F05 ClassModifier 3 F18 ParamContainsTypeOrName 11
F06 HasParameters 1 F19 ParaFlowsToReturn 1
F07 HasReturnType 1 F20 ParamToSink 13
F08 InnerClass 1 F21 ParamTypeMatchesReturnType 1
F09 InvocationClassName 10 F22 ReturnTypeContainsName 6
F10 InvocationName 39 F23 ReturnType 5
F11 IsConstructor 1 F24 SourceToReturn 7
F12 IsRealSetter 1 F25 VoidOnMethod 1
F13MethodModifier 4
Total 206

The training set in SWAN contains 235 Java methods collected
from 10 popular Java frameworks: Spring [45], jsoup [34], Google
Auth [25], Pebble [48], jguard [33], WebGoat [41], and four Apache
frameworks [2, 3, 8, 9]. We put particular care in ensuring that the
methods were chosen so that each of the 206 feature instances of
SWAN had at least a positive and a negative example, making each
example relevant for the learning algorithm.

3.3 Classifiers

To obtain the evaluation matrix, SWAN uses the Soot [11, 35, 52]
program analysis framework. As its machine-learning module, it
uses the SVM learner from the WEKA [53] library. The training
set is defined as a JSON file that contains the 235 Java methods
mentioned above, annotated with Srm types and CWEs. SWAN
accepts a Java program or library as its test set, and runs the two-
phase classification, yielding lists of classified test Srm.

WEKA contains different types of classifiers: linear, probabilistic,
tree-based, rule-based, etc. We have evaluated seven of them to
determine which one would be most appropriate to use in SWAN:
Support Vector Machine (SVM), Bayes Net, Naive Bayes, Logistic
Regression, C4.5, Decision Stump, and Ripper. We have run a set of
ten 10-cross fold validations [46] for each of the classifiers on the
training set. The median precision and recall are shown in Table 4.
We see that SVM yields the best precision and recall in all cases,
classifying on average with 90% of the methods correctly. Naive
Bayes also yield good results, and Decision Stump has the lowest
precision, with 62,5% for the CWE-79. As a result, we chose SVM
as the default classifier for SWAN.

3.4 Using and Extending SWAN

SWAN is implemented as a standalone command line Java program
accepting four input files: a path to a directory containing the test
dataset, a link to a Json file containing the signatures of the methods
from the training sets, a path to a directory containing the source
code implemenation of the methods listed in the Json file, and a
path of a directory where the output files to be stored.

SWAN can be extended with new CWEs and categories as fol-
lows:

12 IFeature classNameContainsSql = new
MethodClassContainsNameFeature("sql");

13 addFeature(classNameContainsSql , new
HashSet <>(Arrays.asList(Category.SOURCE ,

14 Category.SINK , Category.CWE089 , Category.NONE)));

Listing 2: Initializing a new feature instance in SWAN and

matching it to its corresponding categories

• add a description of the CWE in the class Category,
• create new feature instances specific to the CWE,
• instantiate the feature instances and match them to the cate-
gories the methods should be classified in when using this
instance, as shown in Listing 2,
• adjust the training set by (1) marking the existing methods
with the new CWE and (2) adding methods if necessary, to
ensure that the training set contains at least one positive and
one negative example per instance.

Listing 2 shows code from the class FeatureHandler that cre-
ates the instance MethodClassContainsSql. The method addFeature

matches the feature instance with the relevant classes Source, Sink,
CWE-89 and None.

4 SWANAssist: INTEGRATING USER

FEEDBACK

We introduce SWANAssist, an extension of SWAN for integrating
developer feedback in the training set to improve the precision of
the Srm detection by adapting SWAN to the codebase.

4.1 Active Machine Learning

Because SWAN is designed for general Java applications, when
run on one particular program, it may not be precise enough to
correctly classify all methods in the code base. In order to improve
its precision, we have extended SWAN to query the code developer
for their knowledge of the code base (R3).

SWAN is extended with the component SWANAssist (as shown
in the upper part of Figure 1) that allows developers to edit SWAN’
training set directly in their Integrated Development Environment
(IDE). The developer can add or remove methods of the training set,
or change the classification of amethod. The new training set is then
fed to SWAN for another classification iteration. To continuously
refine the list of Srm, SWANAssist uses an active-learning approach,
integrating the user1 feedback. Our active-learning is inspired from
the standard reinforcement learning model [47], which consists
of an agent and an environment, where the agent takes a set of
actions based on the state of the environment to maximize a reward.
In SWANAssist, the code developer plays the role of the agent,
and their IDE is the environment, as shown in Figure 2. The state
shown to the developer is the list of Srm and the reward function is
developer’s perception of the classification’s quality. The developer
can then take the action of (re-)classifying a set of methods before
they call SWAN again.

SWANAssist integrates the developer in the loop as the agent.
Opposed to the traditional approach to reinforcement learning, it

1In this context, typical users would be software developers that seek to configure a
static analyzer.

5



Table 4: Precision (P) and recall (R) of the 10-cross fold validation for all classifiers averaged over 10 iterations in %.

So Si Sa Auth CWE-78 CWE-79 CWE-89 CWE-306 CWE-601 CWE-862 CWE-863 Average
P R P R P R P R P R P R P R P R P R P R P R P R

SVM 93.8 94 87.8 87.9 97.9 97.9 94.7 94.8 86.5 89.6 77.9 79.9 86.3 90.2 93.4 93.1 85.3 86.3 85.4 85.7 88.8 90 90 90

BayesNet 94.5 94.6 87.8 88 97.5 97.2 92.9 92.4 89.2 90.4 78.2 78.5 89.4 91 93.6 93.2 82.4 85.3 87.1 87.3 88 88.3 89 90
NaiveBayes 94.5 93.5 86.9 86.8 96.6 96.4 89.4 90.5 88.1 89.9 78 78.6 88.5 90.6 93.1 92.6 82.5 85.5 86.9 87.1 89.1 89 88.5 89.1
LogReg 94.3 94.1 78 78.3 95.2 95.3 94.4 94.2 87.7 89.9 63 79.1 86.5 89.6 93.6 93.4 84 86.2 84.4 85.4 88 88.2 87.5 88.5
C4.5 94.5 94.6 82.4 83 97.4 97.5 93.4 93.8 85.3 89.1 81.6 80.3 86.9 90.2 93.6 93.2 85.6 86.1 86.5 86.6 87.5 87.7 88.6 89.3
Stump 90.4 89.8 66.4 71.5 88.9 89.6 78 86.8 87.2 90.2 62.5 77 82.6 90.3 87.5 84.7 86.3 85.7 84.6 80.4 86.6 83.8 81.9 84.5
Ripper 92.8 93 82.9 83.3 97.4 97.5 89.2 90 86.7 90 70 76.4 85.4 90.4 92.3 91.6 77.5 85 84.5 84.2 87 86.8 86 88

Agent
(User)

Environment
(IntelliJ)

Action (user feedback)

Reward (classification quality)

State (classified methods)

Figure 2: Active-learning in SWANAssist

runs the machine learning at each iteration, by changing the train-
ing set, instead of integrating the feedback during the learning
phase. This system allows developers to further adapt the classifi-
cation of the methods in their code base after the original run of
SWAN, by improving the training set. Since the user is involved in
the process, SWANAssist is a semi-automatic approach.

To help the developer identify methods that are most useful to
the classification, SWANAssist generates a list of methods that—if
classified differently—would yield the most impact on the next run
of SWAN, based on the evaluation matrix generated for the training
set. This is detailed in Section 4.3. Overall, SWANAssist uses the
automated mechanism of SWAN (R4) to detect Srm, and enhances
it with developer-based information to improve the precision of
the Srm detection (R5).

4.2 The IntelliJ Plugin

We have implemented SWANAssist as a plug-in component for
the IntelliJ IDEA IDE [32]. SWANAssist provides an interface for
editing the Srm lists and for executing SWAN, updating the Srm
classification on demand. Figure 3 presents SWANAssist’s Graphical
User Interface (GUI), which we detail below.

SWAN’s training set is shown on the rightmost view of the GUI,
called the SWAN_Assist view. Methods in this view can be filtered
by classification class or by file. The pop-up dialog in the center
allows the developer to edit the training set. It is accessible through
the SWAN_Assist view or through the context menuwhen amethod
in the code editor is selected. With this dialog, the developer can
add or remove classes for the method. Methods can be added to the
training set through the context menu, and removed through the
context menu or using the SWAN_Assist view.

SWANAssist also allows the developer to re-run the classifica-
tion by clicking on the icon in the toolbar of the SWAN_Assist
view. This update configures the inputs for SWAN, runs it in the
background, and updates the list of Srm. This is shown as the dot-
ted edge in the upper part of Figure 1. The methods that were just

removed are displayed in gray, at the bottom of the list, and can
be returned into the training set by using the restore functionality
from the context menu. Otherwise, they are removed from the list
on the next run. We have made the re-running of SWAN manual
because of its running times. In general, re-computing the Srm
for smaller libraries containing about a thousand methods (e.g.,
Eclipse Smarthome) takes under one minute. Larger libraries with
thousands of methods (e.g., Android) can take up to a few minutes.

4.3 Detecting Impactful Methods

To help developers to classify methods more efficiently, the Sug-
gestSWAN module provides them with suggestions of methods
from the codebase that are likely to have the most impact on the
classification (dashed edge in Figure 1). Algorithm 1 presents the
suggestion strategy: it computes the method pair that will be the
most impactful in the next classification round. This is calculated
by iterating over all method pairs. For all features of SWAN, if the
method pairs have different values in the evaluation matrix (i.e.,
they are a pair of example/counter-example for that feature), the
weight of that pair increases. In the end, the pair with the best
weight is returned for evaluation. This is repeated until all features
are covered, which is monitored by the global f eatures set. When
this point is reached, f eatures is emptied and the loop starts again
until all methods are classified or until the developer decides to
stop classifying methods.

The weight added to a pair for a particular feature depends on
the feature: some features in SWAN are more likely to be impactful
than others. We have determined this by evaluating the impact
of the individual SWAN features through a One-At-a-Time (OAT)
analysis. In this analysis, we ran ten 10-fold cross validations on
SWAN’s training set per class (four Srm and seven CWE classes),
disabling one feature instance at a time. For each run of the SVM
classifier (i.e. SMO instance in WEKA), we marked the F-measure
(harmonic mean of precision and recall) averaged over all repe-
titions with randomly distributed folds. We used the F-measure
to rank the offsets to obtain the feature weights with which we
initialize SuggestSWAN.

SuggestSWAN has a quadratic complexity. More complex strate-
gies could be used to suggest methods with a better impact, taking
into account several iterations at once. The ideal solution can be
reduced to a knapsack problem over all combinations of features,
running in an exponential complexity. Since SWANAssist is de-
signed to run in the IDE, we privileged the faster running method
to satisfy the need for responsiveness.

6



Figure 3: Graphical User Interface (GUI) of SWANAssist. Its components are detailed in Section 4.2

Table 5: Total number of methods (#M), and number of Srm detected by SWAN per category.

#M #Srm So Si Sa Ass Aus Anc CWE-78 CWE-79 CWE-89 CWE-306 CWE-601 CWE-862 CWE-863

Android 128,783 39,165 25,085 13,798 503 503 136 288 188 158 334 1,151 229 1,016 109
Apache Commons 24,654 9,129 6,200 2,905 39 81 24 22 126 557 9 110 72 104 35
Apache Cordova 717 273 147 123 3 9 0 1 7 2 0 10 0 2 0
Apache Lucene 3,240 717 491 221 5 0 0 0 0 0 0 0 0 0 0
Apache Stratos 50,724 19,596 12,774 6,602 214 191 44 92 145 26 24 327 107 334 131
Apache Struts 2,670 1,315 752 560 6 0 0 0 360 4 0 0 3 0 0
Dropwizard 659 280 139 137 0 5 0 2 0 0 0 7 0 6 5
Eclipse Jetty 1,157 650 371 255 4 22 4 25 0 20 24 49 27 45 28
Eclipse SmartHome 934 261 185 76 0 0 0 0 0 0 0 0 0 0 0
GWT 44,970 8,093 5,785 2,255 117 7 1 2 41 268 5 10 57 0 0
Spark 884 142 96 22 1 24 0 0 0 0 0 24 6 3 4
Spring 31,369 12,622 7,275 5,138 72 339 36 134 125 301 785 504 233 441 157
Median % 100 31.72 20.39 11.04 0.33 0.41 0.08 0.19 0.34 0.46 0.41 0.75 0.25 0.67 0.16

Table 6: Number of manually verified methods (#MV), and precision of SWAN for each category on twelve Java libraries. N/A

marks categories for which SWAN detected no methods.

#MV So Si Sa Ass Aus Anc CWE-78 CWE-79 CWE-89 CWE-306 CWE-601 CWE-862 CWE-863 Median
Android 650 0.98 0.9 0.98 0.62 0.8 0.66 0.96 0.78 0.62 0.52 0.5 0.52 0.62 0.727
Apache Commons 529 0.88 0.78 0.9 0.74 0.792 0.727 0.9 0.54 0.694 0.75 0.56 0.7 0.743 0.747
Apache Cordova 134 0.88 0.9 1 0.556 N/A 1 1 1 N/A 0.52 N/A 1 N/A 0.888
Apache Lucene 105 0.94 0.68 0.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 0.81
Apache Stratos 594 0.9 0.82 0.78 0.64 1 0.64 0.68 0.769 0.792 0.68 0.56 0.5 0.7 0.721
Apache Struts 163 0.94 0.88 1 N/A N/A N/A 1 0.54 N/A N/A 1 N/A N/A 0.804
Dropwizard 125 0.88 0.66 N/A 0.8 N/A 0.5 N/A N/A N/A 0.8 N/A 0.667 0.8 0.76
Eclipse Jetty 348 0.88 0.68 1 0.773 0.75 0.8 N/A 0.75 0.708 0.714 0.704 0.533 0.714 0.724
Eclipse Smarthome 100 0.96 0.96 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 0.96
GWT 367 0.92 0.8 0.82 0.857 0 1 0.439 0.6 1 0.8 0.72 N/A N/A 0.734
Spark 134 0.82 0.955 1 0.875 N/A N/A N/A N/A N/A 0.917 0.833 0 0.75 0.851
Spring 636 0.9 0.82 0.82 0.68 0.861 0.8 0.9 0.66 0.889 0.82 0.6 0.62 0.8 0.785
Median 0.91 0.82 0.864 0.7 0.862 0.718 0.798 0.648 0.71 0.723 0.608 0.574 0.716

5 EVALUATION

To evaluate SWAN and SWANAssist, we answer the following re-
search questions:

• RQ1What is SWAN’s precision on real-world Java libraries?
• RQ2 How does SWAN compare to existing approaches?

• RQ3 How much manual training does SWANAssist require
to obtain optimal precision?

7



Algorithm 1 Choosing the most impactful pair of methods
1: alreadySuддested ← ∅
2: f eatures ← ∅ ◃ Keep covered features globally.
3: function suggest(Boolean[Methods][Features] testSet)
4: if f eatures = swanFeatures () then
5: f eatures ← ∅ ◃ Reinitialize coverage.
6: (Method m1, Method m2)← ∅ ◃ Most impactful pair.
7: forMethod m1’ in methods do
8: for Method m2’ in methods do
9: if alreadySuддested .contains (m1′,m2′) then
10: continue
11: for Feature f in swanFeatures() do ◃ Add to the

pair’s impact if they have opposite evaluations.
12: if testSet[m1’][f] , testSet[m2’][f] then
13: updateFeaturesAndWeiдht (m1′,m2′)
14: (m1,m2) ←max ((m1,m2), (m1′,m2′))
15: f eatures ← f eatures \ (m1,m2). f eatures
16: alreadySuддested = alreadySuддested ∪ {m1,m2}

return (m1, m2)

5.1 RQ1: Precision on Real-World Applications

We ran SWAN on a benchmark of twelve popular Java libraries.
The benchmark applications were selected to be real-world, open-
source Java programs that contain at least 500 methods, and that
have evidence ofmaintenance and development over a recent period
of time (i.e., at least 2 years and 5 contributors). They are composed
of two frameworks from the mobile domain (Android v4.2 [24]
and Apache Cordova v2.4 [4]), eight web frameworks (Apache
Lucene v6.6.5 [5], Apache Stratos v4.0 [6], Apache Struts v1.2.4 [7],
Dropwizard v1.3 [13], Eclipse Jetty v9.2 [15], GWT v2.8.2 [26], Spark
v2.7.2 [31], and Spring v4.3.9 [45]), one framework from the home
automation domain (Eclipse SmartHome v0.9 [16]), and one utility
framework (Apache Commons2 v19 [3]).

Table 5 presents the number of Srm detected by SWAN in each
Java library. Over the 290,791 methods of the twelve frameworks,
SWAN classified 74,603 of them as Srm. We see that a large num-
ber of methods are classified as sources and sinks. This is due to
the broad definition of sources and sinks, as they should allow an
analysis to detect any type of SANS top 25 sources and sinks. How-
ever, restricting the Srm to particular CWEs significantly reduces
the number of methods to consider (e.g., from 20.39% source Srm
to under 1% source/sink/validator/authentication methods for all
CWE-specific Srm), and therefore decreases the complexity of the
analyses that use them.

Because of the high number of reported Srm, we did not man-
ually verify the complete classification. For each framework, we
randomly selected 50 methods from each category of Srm and CWE
(or fewer, if the number of methods detected by SWAN was lower),
and manually verified their classification. The resulting precision
of SWAN for each category is presented in Table 6.

Over the different classes, SWAN yields a precision of 0.826 for
the Srm classes and of 0.677 for the CWE classes. SWAN is most

2This also includes Apache XML-Xalan, XML-Xerces, XMl-Rcp, HttpComponents, and
Oltu-OAuth2

precise (0.91) when detecting sources. Misclassifications for this
category are mostly due to the presence of getter methods in plain
old Java objects, which share similarities with source methods (e.g.,
returning a String). This can be improved by training the model
with more counter-examples in the training set. SWAN is least
precise for CWE-862 (0.574), in particular on Spark (0), which is
based only on three methods detected making the value an outlier
to the dataset. Even though CWE-862 and CWE-863 are similar,
making their Srm overlapping, the precision of CWE-863 is better
as there are more examples available, and it is more specific. Any
authorization information available such as credentials and tokens,
are considered in CWE-863, but not in CWE-862 and the frameworks
have generally more methods that are related to this.

Other misclassifications cannot be improved by mod-
ifying the training set. For example, the Spring method
Connection.getConnection() has a different behaviour when
overwritten in its subclasses: in SingleConnectionFactory, it is
an authentication method of type Ass, and in ConnectionHolder,
it does not perform an authentication behavior. This information
cannot be inferred from the source code, as those two methods are
too similar. The differentiation information can be found from the
API documentation of the methods. We conclude that SWAN could
be improved by adding features that go beyond the code.

Over the twelve libraries, SWAN yields a precision of 0.76. While
it is naturally lower than the 0.9 found with the 10-fold cross vali-
dation (Table 4), it shows that the generalization of the approach to
Java projects is still able to classify Srm with a good precision. The
low standard deviation (σ = 0.075) denotes the stability of SWAN’
precision over the different Java projects.

SWAN is most precise on Eclipse Smarthome, which is explained
by the fact that the library is aimed at home automation, and does
not contain the web CWEs that SWAN currently supports. There-
fore, SWAN could only detect sources and sinks, for which it is
strongest. One of the libraries for which SWAN performs the weak-
est is Android, with low precision for authentication methods and
methods for CWE-306, CWE-862, and CWE-863. This is due to the
keywords used in SWAN’ features (e.g., dis/connect), which overlap
with domain-specific methods (e.g., connection to Wifi, Bluetooth,
or NFC adapter). On our training set, such methods are typically
used for authentication, which is not the case for Android. We can
conclude that despite its good precision, SWAN still needs more
domain-specific information, motivating the need for user input
and of SWANAssist.

Over 12 Java libraries, SWAN yields a precision of 0.76.
It is more precise for detecting Srm types (0.826) than
for CWEs (0.677). SWAN can be improved by adding non
source code-specific features, a more complete training
set, and domain-specific information. The latter two can
be provided by the code developer, using SWANAssist.

5.2 RQ2: Comparison to Existing Approaches

We know of the following three approaches to have open-sourced
their Srm: Susi [10], Sas et al.’s approach [44], and JoanAudit [50].

Susi and Sas et al. We compare the lists of sources and sinks
from Susi [10] and its extension by Sas et al. [44] to the lists of

8



Figure 4: Number of sources (left) and sinks (right).

sources and sinks generated by SWAN on the Android framework
(version 4.2). The number of sources and sinks detected by the three
approaches is shown in Figure 4. SWAN reports a total of 25,085
sources and 13,798 sinks, Susi 18,044 sources and 8,278 sinks, and
the tool by Sas et al., 3,035 sources and 7,311 sinks. SWAN reports
more Srm than the other two approaches, which after a manual
investigation we attribute to two reasons. First, SWAN’s features
target a broader range of vulnerabilities compared to Susi’s and
Sas et al’s data privacy focus. Second, Susi reports methods from
abstract classes and interfaces, SWAN reports their concrete imple-
mentations, which allows for a better precision. Sas et al. are stricter
and only report warnings belonging to certain classes: database, gui,
file, web, xml, and io. Unlike to SWAN and Susi, Sas et al. reports
more sinks than sources. This is due to the larger number of sink
features than source features contained in their approach. Both
SWAN and Susi contain enough features and training instances to
overcome this issue.

To compare the precision of the three approaches, we randomly
selected 50 sources and 50 sinks in the lists produced by the three
tools, and manually classified them. SWAN shows a precision of
0.99 for sources and 0.92 for sinks (confirming our findings of RQ1),
whereas Susi yields respective precisions of 0.96 and 0.88, and Sas
et al.’s tool has 0.88 and 0.88 respectively.

JoanAudit. The authors of JoanAudit have manually created lists
of 177 Srm classified in five injection vulnerabilities for taint analy-
sis, including sources, sinks, and validators. JoanAudit’s Srm are
taken from various Java applications, two of which are in common
with SWAN: Spring and Apache Commons. Applied to the Spring
framework, SWAN is able to detect two of the three methods listed
in JoanAudit, the third one being an interface method of which
SWAN reports the concrete implementations. On Apache, SWAN
detects seven of the ten JoanAudit methods. Two of the missing
three are related to the XML injection vulnerability which is not yet
included in the classification of SWAN. This indicates that SWAN
can be used to create lists of Srm which quality is comparable to
hand-crafted lists such as JoanAudit’s.

For sources and sinks, SWAN yields a higher precision
than Susi and Sas et al.’s approach. It can detect Srm with
a quality comparable to hand-crafted lists.

5.3 RQ3: Manual Training

We next seek to evaluate how well SWANAssist helps improve the
classifiers precision, and in particular how much manual train-
ing these improvements require. To evaluate the precision of the
reinforcement-learning approach, we selected a (1) well-maintained,
(2) open-source project that contains (3) a high number of Srm, and
(4) fewer than 2,000 methods, so that we could classify all of them
manually. We used the GitHub mining tool BOA [14] and selected
the Gene Expression Atlas (GXA) [30] application, a popular tool in
the domain of bioinformatics maintained by the European Bioinfor-
matics Institute (EMBL-EBI) [17]. We chose GXA because it yields
a relatively low precision with the base SWAN. This allows us to
showcase the potential of the reinforcement-learning approach in
the worst case compared to an application that already has a good
precision to begin with.

We manually classified and labeled the 1,638 methods of GXA
with one or more of the following classes: sources, sinks, CWE-89,
none. 286 methods were identified as sources, 183 methods as sinks,
and 29 as relevant to CWE-89, and consider this our ground truth.

To evaluate how SWANAssist’s suggester algorithm (Section 4.3)
helps improve the results of SWAN, we compare the resulting Srm
lists when feeding SWANAssist randomly selected method pairs,
and when using SuggestSWAN to select those pairs. We first run
SWAN with its initial training set and GXA as a testing set. Then,
add a new method pair to the training set and continue until we
run out of methods. For each of the 819 iterations, we report the
classification’s precision it in Figure 5. The precision shown for the
random suggester is averaged over 10 runs.

We see that for sources and sinks, the evolution of the precision
for the random suggester is linear. This shows that the suggester
does not help the classification: the precision increases naturally as
a new pair is added to the training set. On the other hand, SWAN
shows a quick increase in precision at the beginning, showing that
the suggester is efficient in selecting the methods with the most
impact first. This maximizes the impact of the classification and
minimizes the developer work to tune SWAN to their code base. In
the case of sources, the precision reaches 0.8 at iteration 31 (from
0.75 at iteration 1), making 60 methods labeled (4% of the total
number of methods in the application). Afterwards, the growth
slows down, reaching a precision of 0.9 after 91 iterations. In the
random case, the growth is much slower, reaching a precision of
0.8 at iteration 166 and 0.9 at iteration 414. For sinks, the precision
using reaches 0.9 at iteration 20 (from 0.61 at iteration 1) with
SuggestSWAN, requiring the developer to only label 1% of the total
number ofmethods in the application. This precision is only reached
at iteration 358 with the random suggester.

Although less visible, we see a similar trend for the case of
CWE-89 where the precision in the early iterations is better when
using SuggestSWAN. The growth is less pronounced, only reaching
a precision of 0.8 at the 130th iteration (from 0.67 at iteration 1),
requiring 16% of the methods to be labeled. We attribute this to the
lower number of SWAN instances targeting this class compared to
the Srm classes, and to the low number of CWE-89-related methods
in the test set, making the classifier less efficient in targeting it.

9



Pr
ec

is
io
n

0,70

0,78

0,85

0,93

1,00

Iteration

1 101 201 301 401 501 601 701 801

Suggester
Random

Pr
ec

is
io
n

0,5

0,625

0,75

0,875

1

Iteration

1 101 201 301 401 501 601 701 801

Pr
ec

is
io
n

0,4

0,55

0,7

0,85

1

Iteration

1 101 201 301 401 501 601 701 801

Figure 5: Precision of the sources (top), sinks (middle), and

CWE-89 (bottom) over 819 iterations of SWAN by adding

methods with SuggestSWAN and with random selection

In all three cases, we note regular drops in the precision. Fur-
ther investigation reveals that those drops occur when a prob-
lematic method is added to the training set. For example, method
void uk.ac.ebi.gxa.utils.EfvTree.put(uk.ac.ebi.gxa.utils.EfvTree) is ex-
pected by the classifier to be a sink method, since it does not return
anything, contains “put” in its name, and accepts an argument.
However, the method is a simple accessor method, and does not
constitute a sink. Such methods pollute the training set, and make
the classification less precise until enough methods are added to
compensate for the uncertainty. This issue can be mitigated by
improving SWAN’s features, or through a smarter handling of the
problematic methods and when to add them to the training set to
minimize pollution. The presence of such methods also shows one
more reason for why a user-guided approach such as SWANAssist
is useful, particularly in the presence of imperfect training sets.

Using SuggestSWAN on GXA yields high precision signif-
icantly faster than with a random selection of methods.

6 LIMITATIONS AND FUTUREWORK

The classification ofmethods as Srm and their further categorization
into CWE classes also depend on to the developer’s goals and the
analysis’ goals. This will determine how the Srm are used, for
example to detect different types of CWE. Using SWANAssist helps
mitigate the misclassifications introduced by the general approach
of SWAN. To further address this issue, analysis writers could also

help specify the initial training set and features when defining the
configuration of the analysis. We will explore this in future work.

SWANAssist’s main usability issue lies in the manual trigger
of the re-classification. This design choice was made because of
SWAN’s running time. While it takes a few seconds on small li-
braries with few hundred methods, it can take up to a few minutes
for larger libraries with more than 100,000 methods such as An-
droid. As a result, we reduce the number of times SWAN is run.
In addition, on re-run, the tool starts a separate background pro-
cess for SWAN that does not block the GUI and let users continue
working in the IDE.

It is possible to improve the precision of static analyses by pro-
viding more granular Srm information. Not only the methods them-
selves are important, which objects they affect can also be important
(i.e., which parameter, static variable, return variable, or base ob-
ject). We leave the detection of such affected objects to future work.
Additionally, we plan to extend SWAN and SWANAssist to support
a larger number of CWEs. We also plan to improve SWAN’ training
set in a more systematic manner, to ensure a better precision of
the approach, and develop a better strategy to handle potentially
problematic methods in SuggestSWAN.

7 RELATEDWORK

7.1 Learning Srm

Many static analyses use Srm to configure their analyses. For ex-
ample, in the domain of Android applications, the Srm are typically
computed using Susi-like approaches. This makes those analy-
ses [12, 38–40] susceptible to Susi’s weaknesses. For instance, those
approaches do not consider sanitizers. SWAN and SWANAssist sup-
port sanitizers, and include user feedback in order to refine the list
and reduce the number of false positives.

Susi [10] is a machine-learning approach for sources and sinks
in the Android framework. It uses 26 feature types and runs two
iterations of maching-learning to first classify methods as sources,
sinks, or neither, and then, in different Android-specific classes
such as bluetooth, browser, etc. SWAN extends Susi to detect sani-
tizers and authentication methods, on top of sources and sinks. It
also allows for classifications into CWE sub-classes. Unlike Susi,
which is specific to Android, SWAN generalizes Susi to Java appli-
cations. It thus loses in precision but makes up for it by introducing
SWANAssist, which interleaves the code developer with the Srm
detection task. This allows SWAN to generate Srm that are more
specific to the analyzed code base.

Sas et al. [44] introduce the need for generalizing the detection of
Srm for general Java libraries, and the classification in CWE classes.
They extend Susi, modifying its features to achieve the former
goal. But unlike SWAN, they do not address the latter. Similarly to
Susi, Sas et al.’s approach detects sources and sinks offline. SWAN
can additionally recognize sanitizers and authentication methods,
and classify Srm by CWEs. In conjunction with SWANAssist, our
approach provides more adapted functionalities to support code
developers using static analysis in practice.

Like SWAN, Merlin [36] also detects Srm automatically. It uses
probabilistic inference to detect specifications for taint-style anal-
yses of string-based vulnerabilities. It models information flow

10



paths in a propagation graph using probabilistic constraints. How-
ever, the resulting Srm are specific to the application of Merlin, i.e.
string-based vulnerabilities, and Merlin does not provide support
to classify them in sub-types such as CWEs.

7.2 Machine Learning and Developer Feedback

in Static Analysis

Past approaches have included machine-learning and require de-
velopers’ feedback to refine static analysis results. For example, Fry
et al. [23] use machine learning to cluster analysis warnings into
similarly actionable warning groups. Heckman et al. [28] apply the
method to determine which warnings are more likely to be false
positives. In such cases, machine-learning is used offline, after the
analysis is run, and before the results are shown to the developer.
They do not include developer feedback.

Other approaches include developer feedback. For example,
Aletheia [51] filters the results that it displays by learning the needs
of developers. Similarly to SWAN, Aletheia shows the developer
a portion of the warnings and asks the developer to classify them,
thus instantiating features for the machine learning algorithms.
This classification is then used as a filter in the UI. The classifi-
cation phase takes place earlier with SWAN, before the analysis
runs. This reduces the analysis time and makes it usable in the IDE,
similarly to Lucia et al.’s approach [37], which uses incremental ma-
chine learning to detect false positives in real time. SWAN achieves
the same results, applied to the problem of Srm discovery.

8 CONCLUSION

Configuring static analyses with the correct set of Srm is an im-
portant factor in the precision of those analyses. In this paper, we
presented SWAN, an automated approach for detection of Srm and
their sub-classification in CWEs, and SWANAssist, a reinforcement-
like learning approach that allows the adaption of the Srm lists to
a particular codebase using feedback from the user. SWAN is able
to detect sources, sinks, validators, and authentication methods
with a high precision, and perform better or with a comparable
precision to existing approaches. The sub-classification of those
Srm into different CWE filters a large number of methods that can
cause false warnings in the CWE detection. As a tool integrated
in the developer’s IDE, SWANAssist requires little user feedback to
significantly improve the Srm lists.

ACKNOWLEDGMENTS

We thank Oshando Johnson and Parviz Nasiry for their work on
the implementation of SWANAssist. This research was supported
by a Fraunhofer Attract grant, the Software Campus initiative by
the German Federal Ministry of Education and Research as well as
the Heinz Nixdorf Foundation.

REFERENCES

[1] Anonymized. [n. d.]. We will make the link available for the camera-ready version
of the paper. anonymized. Online; published 03 November 2018.

[2] Apache. [n. d.]. Abdera. https://abdera.apache.org/.
[3] Apache. [n. d.]. Apache Commons. https://commons.apache.org/.
[4] Apache. [n. d.]. Apache Cordova. https://cordova.apache.org/.
[5] Apache. [n. d.]. Apache Lucene. http://lucene.apache.org/.
[6] Apache. [n. d.]. Apache Stratos. http://stratos.apache.org/.
[7] Apache. [n. d.]. Apache Struts. https://struts.apache.org/.

[8] Apache. [n. d.]. Roller. http://roller.apache.org/.
[9] Apache. [n. d.]. Tomcat. http://tomcat.apache.org/.
[10] Steven Arzt, Siegfried Rasthofer, and Eric Bodden. 2013. SuSi: A Tool for the Fully

Automated Classification and Categorization of Android Sources and Sinks SuSi:
A Tool for the Fully Automated Classification and Categorization of Android
Sources and Sinks.

[11] StevenArzt, Siegfried Rasthofer, and Eric Bodden. 2017. The Soot-based Toolchain
for Analyzing Android Apps. In Proceedings of the 4th International Conference on

Mobile Software Engineering and Systems (MOBILESoft ’17). IEEE Press, Piscataway,
NJ, USA, 13–24. https://doi.org/10.1109/MOBILESoft.2017.2

[12] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014. Flow-
Droid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware Taint
Analysis for Android Apps. In Proceedings of the 35th ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI ’14). ACM, New
York, NY, USA, 259–269. https://doi.org/10.1145/2594291.2594299

[13] Dropwizard. [n. d.]. Dropwizard. https://www.dropwizard.io/.
[14] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N. Nguyen. 2013.

Boa: A Language and Infrastructure for Analyzing Ultra-Large-Scale Software
Repositories. In Proceedings of the 35th International Conference on Software

Engineering (ICSE’13). 422–431.
[15] Eclipse. [n. d.]. Jetty. https://www.eclipse.org/jetty/.
[16] Eclipse. [n. d.]. Smarthome. https://www.eclipse.org/smarthome/.
[17] European Bioinformatics Institute (EMBL-EBI). [n. d.]. EMBL-EBI home page.

https://www.ebi.ac.uk/. Online; accessed 10 December 2018.
[18] CWE Common Weakness Enumeration. [n. d.]. 2011 CWE/SANS Top 25 Most

Dangerous Software Errors. http://cwe.mitre.org/top25/.
[19] CWE Common Weakness Enumeration. [n. d.]. CWE-287: Improper Authentica-

tion. http://cwe.mitre.org/data/definitions/287.html.
[20] CWE Common Weakness Enumeration. [n. d.]. CWE-359: Exposure of Private

Information (’Privacy Violation’). https://cwe.mitre.org/data/definitions/359.
html.

[21] CWE Common Weakness Enumeration. [n. d.]. CWE CATEGORY: OWASP Top
Ten 2017 Category A1 - Injection. https://cwe.mitre.org/data/definitions/1027.
html.

[22] CWE Common Weakness Enumeration. [n. d.]. CWE home page. http://cwe.
mitre.org/. Online; accessed 27 September 2018.

[23] Z. P. Fry and Westley. 2013. Clustering static analysis defect reports to re-
duce maintenance costs. In 2013 20th Working Conference on Reverse Engineering

(WCRE). 282–291. https://doi.org/10.1109/WCRE.2013.6671303
[24] Google. [n. d.]. Android API 4.2. https://developer.android.com/about/versions/

android-4.2.
[25] Google. [n. d.]. Google Auth Java. https://github.com/googleapis/

google-auth-library-java.
[26] GWT. [n. d.]. GWT. http://www.gwtproject.org/.
[27] Mark Harman and Peter O’Hearn. 2018. From Start-ups to Scale-ups: Opportuni-

ties and Open Problems for Static and Dynamic Program Analysis. In Proceedings

of the 2018 IEEE International Working Conference on Source Code Analysis and

Manipulation (SCAM) (SCAM ’18). IEEE.
[28] S. Heckman and L. Williams. 2009. A Model Building Process for Identifying

Actionable Static Analysis Alerts. In 2009 International Conference on Software

Testing Verification and Validation. 161–170. https://doi.org/10.1109/ICST.2009.45
[29] J. Heffley and P. Meunier. 2004. Can source code auditing software identify

common vulnerabilities and be used to evaluate software security?. In 37th

Annual Hawaii International Conference on System Sciences, 2004. Proceedings of

the. 10 pp.–. https://doi.org/10.1109/HICSS.2004.1265654
[30] European Bioinformatics Institute. [n. d.]. Gene Expression Atlas. https://github.

com/gxa/gxa.
[31] Spark Java. [n. d.]. Spark. http://sparkjava.com/.
[32] JetBrains. [n. d.]. IntelliJ home page. https://www.jetbrains.com/idea/. Online;

accessed 17 October 2018.
[33] JGuard. [n. d.]. JGuard. http://jguard.net/.
[34] jsoup. [n. d.]. jsoup. https://jsoup.org/.
[35] Patrick Lam, Eric Bodden, Ondřej Lhoták, and Laurie Hendren. 2011. The Soot

framework for Java program analysis: a retrospective. In Cetus Users and Compiler

Infrastructure Workshop (CETUS 2011).
[36] Benjamin Livshits, Aditya V. Nori, Sriram K. Rajamani, and Anindya Banerjee.

2009. Merlin: Specification Inference for Explicit Information Flow Problems.
SIGPLAN Not. 44, 6 (June 2009), 75–86. https://doi.org/10.1145/1543135.1542485

[37] Lucia, D. Lo, L. Jiang, and A. Budi. 2012. Active refinement of clone anomaly
reports. In 2012 34th International Conference on Software Engineering (ICSE).
397–407. https://doi.org/10.1109/ICSE.2012.6227175

[38] Björn Mathis, Vitalii Avdiienko, Ezekiel O. Soremekun, Marcel Böhme, and
Andreas Zeller. 2017. Detecting Information Flow by Mutating Input Data.
In Proceedings of the 32Nd IEEE/ACM International Conference on Automated

Software Engineering (ASE 2017). IEEE Press, Piscataway, NJ, USA, 263–273.
http://dl.acm.org/citation.cfm?id=3155562.3155598

11

anonymized
https://abdera.apache.org/
https://commons.apache.org/
https://cordova.apache.org/
http://lucene.apache.org/
http://stratos.apache.org/
https://struts.apache.org/
http://roller.apache.org/
http://tomcat.apache.org/
https://doi.org/10.1109/MOBILESoft.2017.2
https://doi.org/10.1145/2594291.2594299
https://www.dropwizard.io/
https://www.eclipse.org/jetty/
https://www.eclipse.org/smarthome/
https://www.ebi.ac.uk/
http://cwe.mitre.org/top25/
http://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/359.html
https://cwe.mitre.org/data/definitions/359.html
https://cwe.mitre.org/data/definitions/1027.html
https://cwe.mitre.org/data/definitions/1027.html
http://cwe.mitre.org/
http://cwe.mitre.org/
https://doi.org/10.1109/WCRE.2013.6671303
https://developer.android.com/about/versions/android-4.2
https://developer.android.com/about/versions/android-4.2
https://github.com/googleapis/google-auth-library-java
https://github.com/googleapis/google-auth-library-java
http://www.gwtproject.org/
https://doi.org/10.1109/ICST.2009.45
https://doi.org/10.1109/HICSS.2004.1265654
https://github.com/gxa/gxa
https://github.com/gxa/gxa
http://sparkjava.com/
https://www.jetbrains.com/idea/
http://jguard.net/
https://jsoup.org/
https://doi.org/10.1145/1543135.1542485
https://doi.org/10.1109/ICSE.2012.6227175
http://dl.acm.org/citation.cfm?id=3155562.3155598


[39] A. Mendoza and G. Gu. 2018. Mobile Application Web API Reconnaissance:
Web-to-Mobile Inconsistencies amp; Vulnerabilities. In 2018 IEEE Symposium on

Security and Privacy (SP). 756–769. https://doi.org/10.1109/SP.2018.00039
[40] Lisa Nguyen Quang Do, Karim Ali, Benjamin Livshits, Eric Bodden, Justin

Smith, and Emerson Murphy-Hill. 2017. Cheetah: Just-in-time Taint Analysis
for Android Apps. In Proceedings of the 39th International Conference on Software

Engineering Companion (ICSE-C ’17). IEEE Press, Piscataway, NJ, USA, 39–42.
https://doi.org/10.1109/ICSE-C.2017.20

[41] OWASP. [n. d.]. WebGoat. https://github.com/WebGoat/WebGoat.
[42] Open Web Application Security Project. [n. d.]. OWASP Top 10 Most Critical

Web Application Security Risks. https://www.owasp.org/index.php/Category:
OWASP_Top_Ten_Project.

[43] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, LiamMiller-Cushon, and Ciera
Jaspan. 2018. Lessons from Building Static Analysis Tools at Google. Commun.

ACM 61, 4 (March 2018), 58–66. https://doi.org/10.1145/3188720
[44] D. Sas, M. Bessi, and F. Arcelli Fontana. 2018. [Research Paper] Automatic

Detection of Sources and Sinks in Arbitrary Java Libraries. In 2018 IEEE 18th

International Working Conference on Source Code Analysis and Manipulation

(SCAM). 103–112. https://doi.org/10.1109/SCAM.2018.00019
[45] Java Spring. [n. d.]. Java Spring. https://spring.io/.
[46] Mervyn Stone. 1974. Cross-validatory choice and assessment of statistical pre-

dictions. Journal of the royal statistical society. Series B (Methodological) (1974),
111–147.

[47] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-

duction. MIT press. 39 pages.

[48] Pebble Templates. [n. d.]. Pebble. https://pebbletemplates.io/.
[49] TylerW. Thomas, Madiha Tabassum, Bill Chu, andHeather Lipford. 2018. Security

During Application Development: An Application Security Expert Perspective.
In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems

(CHI ’18). ACM, New York, NY, USA, Article 262, 12 pages. https://doi.org/10.
1145/3173574.3173836

[50] Julian Thomé, Lwin Khin Shar, Domenico Bianculli, and Lionel C. Briand. 2017.
JoanAudit: A Tool for Auditing Common Injection Vulnerabilities. In Proceedings

of the 2017 11th Joint Meeting on Foundations of Software Engineering (ESEC/FSE

2017). ACM, New York, NY, USA, 1004–1008. https://doi.org/10.1145/3106237.
3122822

[51] Omer Tripp, Salvatore Guarnieri, Marco Pistoia, and Aleksandr Aravkin. 2014.
ALETHEIA: Improving the Usability of Static Security Analysis. In Proceedings of

the 2014 ACM SIGSAC Conference on Computer and Communications Security (CCS

’14). ACM, New York, NY, USA, 762–774. https://doi.org/10.1145/2660267.2660339
[52] Raja Vallée-Rai, Etienne Gagnon, Laurie J. Hendren, Patrick Lam, Patrice Pom-

inville, and Vijay Sundaresan. 2000. Optimizing Java Bytecode Using the Soot
Framework: Is It Feasible?. In CC. 18–34. https://doi.org/10.1007/3-540-46423-9_2

[53] Ian H. Witten, Eibe Frank, Mark A. Hall, and Christopher J. Pal. 2016. Data

Mining, Fourth Edition: Practical Machine Learning Tools and Techniques (4th ed.).
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

12

https://doi.org/10.1109/SP.2018.00039
https://doi.org/10.1109/ICSE-C.2017.20
https://github.com/WebGoat/WebGoat
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://doi.org/10.1145/3188720
https://doi.org/10.1109/SCAM.2018.00019
https://spring.io/
https://pebbletemplates.io/
https://doi.org/10.1145/3173574.3173836
https://doi.org/10.1145/3173574.3173836
https://doi.org/10.1145/3106237.3122822
https://doi.org/10.1145/3106237.3122822
https://doi.org/10.1145/2660267.2660339
https://doi.org/10.1007/3-540-46423-9_2

	Abstract
	1 Introduction
	2 Requirements for the Machine-learning based Discovery of Srm
	3 SWAN: Security methods for WeAkNess detection
	3.1 General Architecture
	3.2 Features and Training Data
	3.3 Classifiers
	3.4 Using and Extending SWAN

	4 SWANAssist: Integrating User Feedback
	4.1 Active Machine Learning
	4.2 The IntelliJ Plugin
	4.3 Detecting Impactful Methods

	5 Evaluation
	5.1 RQ1: Precision on Real-World Applications
	5.2 RQ2: Comparison to Existing Approaches
	5.3 RQ3: Manual Training

	6 Limitations and Future Work
	7 Related Work
	7.1 Learning Srm
	7.2 Machine Learning and Developer Feedback in Static Analysis

	8 Conclusion
	Acknowledgments
	References

