
1

Debugging Static Analysis
Lisa Nguyen Quang Do, Stefan Krüger, Patrick Hill, Karim Ali, and Eric Bodden

Abstract—Static analysis is increasingly used by companies and individual code developers to detect and fix bugs and security
vulnerabilities. As programs grow more complex, the analyses have to support new code concepts, frameworks and libraries. However,
static-analysis code itself is also prone to bugs. While more complex analyses are written and used in production systems every day,
the cost of debugging and fixing them also increases tremendously.
To understand the difficulties of debugging static analysis, we surveyed 115 static-analysis writers. From their responses, we
determined the core requirements to build a debugger for static analyses, which revolve around two main issues: abstracting from both
the analysis code and the code it analyses at the same time, and tracking the analysis internal state throughout both code bases. Most
tools used by our survey participants lack the capabilities to address both issues.
Focusing on those requirements, we introduce VISUFLOW, a debugging environment for static data-flow analysis. VISUFLOW features
graph visualizations and custom breakpoints that enable users to view the state of an analysis at any time. In a user study on 20
static-analysis writers, VISUFLOW helped identify 25% and fix 50% more errors in the analysis code compared to the standard Eclipse
debugging environment.

Index Terms—Testing and Debugging, Program analysis, Development tools, Integrated environments, Graphical environments,
Usability testing.

F

1 INTRODUCTION

In 2017, Google took down over 700,000 malicious appli-
cations that were submitted to their Play Store [1], 99%
of which were removed before anyone could install them.
One of the techniques used in the vetting process of app
stores –and by some third-party code developers is static
code analysis, a method of automatically reasoning about
the runtime behaviour of a program without running it.
As more complex applications are produced, more complex
analyses are also created to efficiently detect bugs and secu-
rity vulnerabilities in those applications, hereafter referred
to as the analyzed code. An error in the code of the analyses
could have a large security impact on the applications made
available to the public every day: over 86,000 applications
were released on the Google Play Store in April 2018 [2].

Prior static-analysis research has yielded many novel al-
gorithms [3], [4], [5], analyses [6], [7], and analysis tools [8],
[9] to better support code developers and app stores. How-
ever, standard debugging tools [10], [11], [12] are often ill-
suited to help static analysis writers debug their analyses.
Debugging static analysis comes with its own set of chal-
lenges, e.g. abstracting how the analysis code interprets
the code it analyses and how the two code bases interact
with each other. Analysis writers have to handle specific
corner cases in two different code bases while also ensur-
ing soundness and precision. Such tasks can be hard and
time consuming, making the development of new analyses
cumbersome in academia and industry.

• Lisa, Nguyen Quang Do, and Stefan Krüger, and Patrick Hill
are with Paderborn University. Emails: lisa.nguyen@upb.de, ste-
fan.krueger@upb.de, pahill@campus.uni-paderborn.de

• Karim Ali is with University of Alberta. Email: karim.ali@ualberta.ca
• Eric Bodden is with Paderborn University & Fraunhofer IEM. Email:

eric.bodden@upb.de

To provide better tools for developing and debugging
static analyses, we conducted a large-scale survey aimed
at identifying the specificities of debugging static-analysis
code. In this survey, we determine the particular debugging
features needed to debug static analysis. The survey identi-
fies (1) common types of static analysis, (2) common bugs
in static-analysis code, (3) popular debugging tools used
by analysis writers, (4) the limitations of those tools with
respect to debugging static-analysis code, and (5) desirable
features for a static-analysis debugger.

We have implemented some of the debugging features
found in the survey for the most popular development en-
vironment —Eclipse, analysis framework —Soot [13]— and
analyzed language —Java— from the survey. We present
VISUFLOW, a debugging environment for Soot-based static
analysis that helps analysis writers better visualize and
understand their analysis code while debugging it. A user
study with 20 participants shows that the debugging fea-
tures of VISUFLOW help analysis writers identify 25% and fix
50% more errors in static-analysis code compared to using
the standard Eclipse debugging environment. The partic-
ipants found the debugging features in VISUFLOW more
useful than their own tools for debugging static analysis.

This article makes the following contributions:

• A comprehensive survey to motivate the need for better
tools to debug static analyses, and identify desirable
features that such tooling should provide.

• VISUFLOW, a debugging environment integrated in
Eclipse for Soot-based static analysis.

• A user study to evaluate the usefulness of VISUFLOW
for debugging static analyses and determine which of
the desirable features that we have extracted from the
survey are, in fact, useful for debugging static analysis.

VISUFLOW is available online, along with a video demo,
and the anonymized survey and user study datasets [14].



2

2 SURVEY

To identify useful debugging features for static analysis,
we conducted a large-scale survey of 115 static-analysis
writers. The goal of this survey is to understand the specific
requirements of debugging static-analysis code compared to
debugging any kind of code that is not static-analysis code.
We ask participants to contrast those two categories, referred
to as analysis code and application code, which can range from
small test cases to large, complex systems.

We aim to answer the following research questions:
RQ1: Which types of analysis are most commonly written?
RQ2: Do analysis writers think that analysis code is hard-

er/easier to debug than application code, and why?
RQ3: Which errors are most frequently debugged in analy-

sis code and application code?
RQ4: Which tools do analysis writers use to support the

debugging of analysis code and application code?
RQ5: What are the limitations of those tools and which

features are needed to debug analysis code?

2.1 Survey Design
The survey contains 32 questions that we refer to as Q1–
Q32, in the order in which they were presented to partici-
pants. In this section, we omit questions that are not relevant
to the study presented in this article. We group the survey
questions into the following 8 sections:

1) Participant information (RQ1): Through multiple-
choice questions, we asked participants for their affil-
iation (academia/industry) (Q1), how long they have
been writing analyses (Q3), for which languages (Q4),
and with which branches (Q6) and frameworks (Q9) of
static analysis that they have worked with.

2) Debugging analysis code compared to application
code (RQ2): Q11 asks participants which type of code
is easier to debug on a scale from 1 (application code)
to 10 (analysis code). Q12 asks them why, in free text.

3) Debugging analysis code (RQ2–RQ3): Q13 asks par-
ticipants how long they spend on writing analysis code
compared to debugging it on a scale from 0 (100% cod-
ing, 0% debugging) to 10 (0% coding, 100% debugging).
In free text, Q15 asks for the typical causes of bugs that
they find in analysis code.

4) Tools for debugging analysis code (RQ4–RQ5): In
free text, we asked participants which features of their
coding environments they like (Q17), dislike (Q18), and
would like to have (Q19) to debug analysis code.

5) Debugging application code (RQ2–RQ3): Q20 and
Q21 mirror Q13 and Q15, for application code.

6) Tools for debugging application code (RQ4–RQ5):
Q23–Q25 mirror Q17–Q19, for application code.

7) Specific debugging features (RQ5): Q26 asks partici-
pants to rate the importance of some debugging fea-
tures on the following scale: Not important - Neutral -
Important - Very important - Not applicable.

8) Coding environment (RQ4): Q28 asks participants if
they primarily use a text editor (e.g., Vim, Emacs) or
an IDE (e.g., Eclipse, IntelliJ). Q29 asks for the specific
software, in free text.

Pilot Survey: We sent a pilot survey to 10 participants
and asked them for feedback about length, quality, and

Q
1

Q
3

Q
4

Q
6

Q
9

Q
11

Q
12

Q
13

Q
15

Q
17

Q
18

Q
19

Q
20

Q
21

Q
23

Q
24

Q
25

Q
26

Q
28

Q
29

20
40
60
80

100
120

Fig. 1: Number of valid answers (gray) and “Others” an-
swers (white) per question.

understandability. As a result we shortened the survey from
48 to 32 questions and grouped together the questions about
analysis code (becoming sections 3–4 in the survey) and
application code (becoming sections 5–6 in the survey).

2.2 Result Extraction
We manually classified the answers to the free-text questions
using an open card sort [15]. Two authors classified the
answers into various categories, which were derived during
the classification process. Responses that do not answer the
question were classified in an “Others” category (e.g., “n/a”).
We received a higher rate of answers that we classified into
“Others” in the second half of our survey, due to the simi-
larities of survey sections 3–4 and 5–6. In the latter sections,
some participants were confused by the familiar questions
and did not notice that they now pertained to application
code. Answers such as “Already answered the question earlier”
were thus classified into the “Others” category.

To verify the validity of our classification, another au-
thor –who had not been part of the classification phase–
sorted the answers in the categories derived during the
first classification. We then compared the agreement be-
tween the two classifications. Since one answer could match
multiple categories (e.g., “I use breakpoints and stepping.”
matches both “Breakpoint” and “Stepping”), we calculated
a percent agreement for each category of each question.
The average percent agreement over all categories for all
questions is 96.3% (median = 98%, min = 65.2%, max = 100%,
standard deviation σ = 0.05). Because of the imbalance in
the distribution of the answers, we ran into a paradox of
inter-rater agreement [16], making the Cohen’s Kappa [17]
an unreliable statistic for this survey (average κ = 0.66,
median κ = 0.7, min = -0.08, max = 1, σ = 0.33).

Due to optional questions and participants who did not
finish the survey, some questions received fewer answers
than others. Figure 1 reports the number of valid (gray) and
“Others” (white) answers per question. In the following sec-
tions, the percentages reported for each question are based
on the number of valid answers for the particular ques-
tion and not on all 115 answers. Participants could choose
multiple answers to the same multiple-choice question, and
an answer to a free-text question could match multiple
categories. Therefore, the percentages for each question may
add up to more than 100%. Although in this article, we
only report the most popular or relevant answers to the
survey questions, we included all answers in our statistical
tests, and report on all significant results. All questions and
anonymized answers are available online [14].



3

1 2 3 4 5 6 7 8 9 10
0%
5%

10%
15%
20%
25%

Fig. 2: Ranking the difficulty of debugging static analysis
code compared to application code on a scale from 1 (static
analysis is harder) to 10 (application code is harder). (Q11)

2.3 Participants

We contacted 450 authors of static-analysis papers pub-
lished between 2014 and 2016 at the following conferences
and their co-located workshops: ICSE, FSE, ASE, OOPSLA,
ECOOP, PLDI, POPL, SAS. We received responses from 115
researchers, 85.2% from academia and 15.7% from industry
(Q1). Most participants are experienced static-analysis writ-
ers. Approximately 31.3% of the participants have 2–5 years
of experience writing static analysis, 22.3% have 5–10 years
of experience, 26.8% have more than 10 years of experience,
and only 9.8% have less than 2 years of experience (Q3).

2.4 Results

2.4.1 RQ1: Which types of analysis are most commonly
written?
We asked participants which programming languages they
analyze the most (Q4), and received 3 main answers:
Java (62.3%), C/C++ (59.4%), and JavaScript (23.6%). Less
than 8% analyze each of the other 34 named languages.

We also asked participants which branches of static
analysis they write for (Q6). Data-flow analysis is the most
popular (74.5%), followed by abstract interpretation (65.1%),
symbolic execution (36.8%), and model checking (21.7%).
Less than 4% use each of the 9 remaining categories.

The most popular framework used to write static anal-
ysis (Q9) is Soot [13] (55.4%), followed by WALA [18] and
LLVM [19] as second and third (31.1% and 21.6%, respec-
tively). Less than 10% use each of the 32 other frameworks.

RQ1: Java is the most analyzed programming lan-
guage. Data-flow analyses are the most common type
of static analysis. Soot is the most popular framework.

2.4.2 RQ2: Do analysis writers think that analysis code is
harder/easier to debug than application code, and why?
Q11 asks participants to rate how hard debugging analysis
code is compared to debugging application code on a scale
from 1 (analysis code is harder to debug) to 10 (applica-
tion code is harder to debug). The average ranking is 4.0
(standard deviation σ = 2.1). Figure 2 shows that 50.5% of
the participants find static-analysis harder to debug than
application code, 28.2% are neutral, and 9.5% think that
application code is harder to debug. This is confirmed in
Q13 and Q20 where participants reported that they spent
more time debugging a piece of static-analysis code (53.2%
of their time) than writing it (46.8%), and the contrary

TABLE 1: Reasons why static analysis is harder to debug
than application code (SA) and vice-versa (AC). EQ denotes
the reasons why both are equally difficult to debug. (Q12)

Harder Reason %

SA

Abstracting two types of code 15.67%
Greater variety of cases 15.7%
More complex structure of static analysis tools 6.0%
Evaluating correctness is harder 6.0%
Soundness is harder to achieve 3.6%
Intermediate results are not directly accessible 4.8%
Static analysis is harder to debug 3.6%

EQ
Both are application code 13.3%
They cannot be compared 7.2%
No opinion 3.6%

AC
Used to developing static analysis 6.0%
Application code is more complex 2.4%

for a piece of application code (57.5% writing and 42.5%
debugging). A X 2 test of independence does not detect
significant correlations (p > 0.05) between the rating of
Q11 and the participants’ background (seniority, coding
languages, editor type, or analysis frameworks).

Table 1 classifies the reasons that participants gave when
asked why they found one type of code harder to debug
than the other (Q12). In this article, we only report the
reasons mentioned by more than one participant. The main
reason that participants find analysis code harder to debug
is the complexity of handling two code bases (i.e., the anal-
ysis code and the application code that is being analyzed)
at the same time: “Static Analysis requires to switch between
your analysis code and the Intermediate Representation which
you actually analyse”. This complexity creates more corner
cases that the analysis writer must handle. Another reason
is that correctness is harder to define for a static analysis. To
quote a participant: “‘correct’ is better defined [in application
code]”. The final reason is that intermediate results of the
analysis are not directly verifiable in contrast to the output
of application code that can be directly validated: “Static-
analysis code usually deals with massive amounts of data. [...]
It is harder to see where a certain state is computed, or even
worse, why it is not computed.”

Participants who find analysis code and application code
equally hard to debug have two main arguments. First, both
are application code: “a static analyzer is an application, albeit
a sophisticated one”. Second, they are so different that they
cannot be compared: “These two difficulties are qualitatively
different and hence incomparable.”

Participants who find application code more difficult to
debug argue that it is more complex than static-analysis
code, and thus contains numerous corner cases: “Static-
analysis code usually includes very limited number of possible
cases.” Some participants also wrote that the reason why
they find application code harder to debug is that they are
used to developing static analysis.

RQ2: 5.3× more participants found analysis code
harder to debug than application code. This is due to
three main reasons: handling two code bases simul-
taneously, correctness requirements for static analysis,
and the lack of support for debugging analysis code.



4

Corner cases

Programming errors

Algorithmic errors

Domain knowledge

Semantics mismatch

Underlying infrastructure
0%

20%

40%

60%

80% Static Analysis
Application Code

Fig. 3: The root causes of errors found when debugging
static analysis and application code. (Q15 and Q21)

2.4.3 RQ3: Which errors are most frequently debugged in
analysis code and application code?

We asked participants for the typical root causes of errors
they find when debugging analysis code (Q15) and applica-
tion code (Q21), and classified them in the six categories
shown in Figure 3. When debugging analysis code, the
main cause of errors is handling corner cases. This cate-
gory includes overlooked cases that the developer normally
knows of (e.g., “Forgot to consider the effect of certain, rare
instructions”). Domain knowledge refers to code behaviour that
the developer is unaware of (e.g., “Unexpected values re-
turned by an API”). Programming errors occur twice as often in
application code than in static-analysis code. This category
includes implementation errors such as “wrong conditions,
wrong loops statements”. Algorithmic errors contains errors
due to a wrong design decision in the program’s algorithm
(e.g., a “non-convergence” of the analysis), which happens
3.5× more often in analysis code than in application code.
Semantics mismatch and underlying infrastructure are specific
to static analysis. The former refers to how the analysis
interprets the analyzed code (e.g., “The code does not take
[into] account the abstract semantics correctly”). The latter is
similar to domain knowledge, but instead of the knowledge of
the analyzed code, it is about the analysis framework (e.g.,
“Can’t load classes/methods successfully.”).

While bugs in application code are mainly due to pro-
gramming errors, static-analysis bugs are distributed over
multiple categories. We attribute this to the heightened
interest of analysis writers to produce correct analyses.
Testing functional correctness typically requires validating
input/output relationships. For analysis code, those rela-
tionships are always imperfect due to necessary approxi-
mations. Hence, it is hard to define functional correctness
for static analysis. Moreover, handling two code bases is
also the cause of analysis-specific errors: more corner cases,
semantics mismatch and underlying infrastructure. Because
of the specific requirements of static analyses, the bugs that
developers investigate in application code have different
causes compared to analysis code, thus motivating the need
for proper support of those specific categories of errors.

RQ3: Analysis code is more often debugged than
application code for corner cases, algorithmic errors,
semantics mismatch, and unhandled cases in the un-
derlying analysis infrastructure.

TABLE 2: Useful features for debugging static analysis (SA)
and application code (AC) for IDE users (IDE) and text
editor users (TE). (Q17 and Q23)

SA/IDE SA/TE AC/IDE AC/TE

Printing 3 3 3 3
Breakpoints 3 3 3 3
Debugging tools 3 3 3 3
Coding support 3 3 3 3
Variable inspection 3 3 3 3
Automated testing 3 3 3 3
Expression mode 3 3 3 3

Memory tools 3 3 3

Graph visualizations 3 3
Stepping 3 3
Type checker 3 3
Hot-code replacement 3 3

Visualizations 3
Stack traces 3
Drop frames 3
Documentation 3

2.4.4 RQ4: Which tools do analysis writers use to support
debugging of analysis code and application code?

In Q28 and Q29, 56% of the participants answered that to
write analysis code, they use an Integrated Development
Environment (IDE) such as Eclipse [10] (used by 28%) or
IntelliJ [11] (17.3%), while 42.7% use text editors such as
Vim [20] (33.3%) or Emacs [21] (21.3%). Each of the other
21 tools is used by less than 10% of the participants.

We asked participants about the most useful features of
their coding environments when debugging analysis code
(Q17) and application code (Q23). Table 2 shows the fea-
tures mentioned by more than one participant. The most
popular debugging feature is Breakpoints, used by 35.2% of
participants when debugging application code and 28.2%
for analysis code. Coding support (e.g., auto-completion) is
appreciated by 29.6% when writing analysis code, and 20.4%
for application code. Variable inspection is used by 27.8%
when writing application code and 19.7% when writing
analysis code. Debugging tools (e.g., “GDB/JDB”) are used by
20.4% when writing application code, and 16.9% for analysis
code. 21.1% of the participants print intermediate results when
debugging analysis code, compared to 13.0% for application
code. IDE users highlighted IDE-specific features such as
type checkers, stepping, and hot-code replacement.

A X 2 test of independence shows a strong correlation
between the type of editor used (IDE or text editor) and
the most useful features of the debugging environment (p =
0.01 ≤ 0.05) for application code. The test does not find such
a correlation for analysis code, indicating that the debugging
features used when writing analysis code are the same in all
types of coding environments.

RQ4: Regardless of the coding environment, analysis
writers use the same debugging features to debug
analysis code and application code, e.g., breakpoints,
variable inspection, coding support, and printing in-
termediate results.



5

TABLE 3: Unsatisfactory features when debugging static
analysis (SA) and application code (AC) for IDE users (IDE)
and text editor users (TE). (Q18 and Q24)

SA/IDE SA/TE AC/IDE AC/TE

Debugging tools 7 7 7 7
Immediate feedback 7 7 7 7
Coding support 7 7 7 7

Multiple environments 7 7 7

Intermediate results 7 7
Handling data structures 7 7
Support for system setup 7 7

Scalability 7
Visualizations 7
Conditional breakpoints 7
Memory tools 7
Bad documentation 7

2.4.5 RQ5: What are the limitations of the existing debug-
ging tools and which features are needed to debug analysis
code?

Q18 and Q24 ask participants about the features of their
coding environments they dislike when debugging analysis
code and application code, respectively. Features mentioned
by more than one participant are shown in Table 3.

To our surprise, two of the most disliked features—
debugging tools (disliked by 29.5% when debugging analysis
code and 25% when debugging application code) and coding
support (18.2% for analysis code and 25% for application
code)—are also among the most used and appreciated. This
suggests that although current tools are useful, analysis
writers require more specific features to fully support their
needs. For example, a participant wrote: “While the IDE can
show a path through [my] code for a symbolic execution run,
it doesn’t show analysis states along that path.” Therefore,
debugging tools for static analysis could be improved by
showing more of the intermediate results of the analysis.
For application code, participants requested more support
for handling different systems and environments. Partici-
pants complained about the “manual work to setup complex
build/test systems” and “Dealing with an external dependency
[...] that I cannot control”. Participants using an IDE to write
analysis code find that debugging tools are not scalable,
lack visualizations of analysis constructs (e.g., “It’s mostly text-
based”), and need special breakpoints (e.g., “Missing an easy
way to add a breakpoint when the analysis reaches a certain
line in the input program (hence having to re-run an analysis)”).

RQ5-1: Current static-analysis debugging tools lack
important features such as showing intermediate re-
sults, providing clear visualizations of the analysis,
and special breakpoints.

To identify which debugging features would best sup-
port static-analysis writers, we asked participants to sug-
gest useful features for debugging analysis code (Q19) and
application code (Q25). Table 4 shows the features that
are mentioned more than once. The requested debugging
features for application code and analysis code are quite
different. To write application code, participants requested
better hot-code replacement and coding support (e.g., “better

TABLE 4: Requested features when debugging static analy-
sis (SA) and application code (AC) for IDE users (IDE) and
text editor users (TE). (Q19 and Q25)

SA/IDE SA/TE AC/IDE AC/TE

Graph visualizations 3 3
Omniscient debugging 3 3
Visualizations 3 3
Hot-code replacement 3 3
Coding support 3 3

Test generation 3
Debugging tools 3
Intermediate results 3
Conditional breakpoints 3
Handling data structures 3

Graph visuals

Other visualsIR

Test generation

Quick updates

Breakpoints
Stepping

0%

25%

50%

75%

100%

Not Important Neutral Important Very Important N/A

Fig. 4: Ranking the importance of features for debugging
static analysis. IR is "Intermediate representation". (Q26)

support to record complex data coming from external services”).
For analysis code, 18.4% of participants asked for better
visualizations of the analysis constructs, and 23.7%, for graph
visualizations: “Easier way to inspect ‘intermediate’ result of an
analysis, easier way to produce state graphs and inspect them
with tools.” Omniscient debugging was requested by 13.2% of
participants to help show the intermediate results of the
analysis: “Stepping backwards in the execution of a program”.
Participants also requested better test generation tools and
special breakpoints (RQ5-1).

A X 2 test on the features of Table 4 shows a correlation
between the features requested by participants and the type
of code (analysis code or application code) (p = 0.04 ≤
0.05), motivating the need for specific tooling for debugging
static analysis code in particular. The same test did not
yield significant p-values in the case of debugging features
the users liked/disliked, indicating that they use the same
debugging features for analysis code and application code.

In Q26, participants evaluate the importance of the
desirable debugging features. Figure 4 shows that graph
visuals, access to the intermediate representation count as
very important features, along with breakpoints and stepping
functionalities that consider both the analysis code and the
analyzed code. Other types of visuals, better test generation,
and quick updates are considered important.

RQ5-2: The most important features for debugging
analysis code are (graph) visualizations, access to the
intermediate representation, omniscient debugging,
and special breakpoints.



6

2.5 Summary and Discussion

Our survey shows that writing static analysis entails specific
requirements on the writer. Handling two code bases and
defining soundness makes analysis code harder to debug
than general application code (RQ2). Those requirements
cause different types of bugs to be of interest to static-
analysis writers when debugging (RQ3). To debug their
code, analysis writers mainly use the traditional debug-
ging features included in their coding environments such
as breakpoints and variable inspection (RQ4). While those
tools are helpful, they are not sufficient to fully support
them: debugging features such as simple breakpoints fall
short and force analysis writers to handle parts of the
debugging process manually (RQ5-1).

Table 2 shows that the debugging tools that analysis
writers currently use are adapted for more general applica-
tion code. Table 4 shows that the features needed to debug
analysis code are quite different from the features needed
to debug application code. Those features revolve around
improving the visibility of how the analysis code represents
and analyses the analyzed code. The desirable features for
debugging analysis code are (RQ5-2):

• Graph visuals to represent the analysis’ constructs.
• Access to the intermediate results generated by the anal-

ysis at any point in the analyzed code.
• Access to the intermediate representation of the analyzed

code, i.e., the representation of the analyzed code that
is manipulated by the analysis code.

• Other visualizations that give visibility of how the anal-
ysis handles the analyzed code.

• Breakpoints and stepping which can be controlled from
both code bases so that the execution can be stopped
at particular points of the analysis code for particular
statements of the analyzed code.

• Omniscient debugging to be able to track the intermediate
results of the analysis back-in-time.

• Automated test generation to verify the results of a change
in the analysis.

• Quick updates to recompute the analysis results on-the-
fly when a modification in the analysis code or the
analyzed code occurs.

A X 2 test of independence with the participants’ back-
grounds (seniority, coding languages, editor type, or anal-
ysis frameworks) only shows a strong correlation between
the desirable features and the editor type (text editor or IDE)
(p = 0.02 ≤ 0.05), which suggests that the desirable features
are generalizable to the different types of static analysis
and analysis writers represented by our participants, and
that the set of desirable features only differs according to
whether the analysis writer uses a text editor or an IDE.

The features identified in this survey are applicable to
the domain of static analysis. Some of them can also general-
ize to other branches of software engineering that deal with
two code bases that interact with each other, e.g., testing
or meta-programming. However, those branches have their
own specificities and their own challenges in debugging.
For example, specific debugging features would be needed
for code generation in meta-programming. It would be
interesting to study the extent to which those features can
be applied to other fields of software engineering.

   VisuFlow    Eclipse

   Soot

Scene

Analysis

Builder

Debugger

Data Model

UI

Eclipse Debug

Eclipse Core

OSGI EventAdmin

Eclipse UI

Graph

Eclipse JDT

Fig. 5: Component diagram of VISUFLOW.

3 VISUFLOW: VISUAL SUPPORT FOR DEBUGGING
DATA-FLOW ANALYSIS IN ECLIPSE

We have implemented VISUFLOW, a debugging tool for
static analysis following the features we described in Sec-
tion 2.5. To reach the largest possible target audience, the
implementation is made specific to the most popular use
case: debugging data-flow analysis of Java programs using
the Soot analysis framework [13] (RQ1) in the Eclipse IDE
(RQ4). A video demo of VISUFLOW is available online
(https://www.youtube.com/watch?v=BkEfBDwiuH4).

3.1 Architecture of VisuFlow
In this section, we discuss how we adapted the desirable fea-
tures for debugging static analysis to our use case. Figure 5
illustrates the component diagram of our implementation.
The three main components are the Soot framework, the
Eclipse platform, and VISUFLOW, an Eclipse plugin that acts
as a buffer between the IDE and the analysis framework to
provide debugging support to the analysis writer when they
debug an analysis for a particular piece of analyzed code.

Data model: To provide visibility into the analysis, VISU-
FLOW maintains a data model of the analysis’ representation
of the analyzed code. In data-flow analysis, the analyzed
code is abstracted into call graphs (over the methods of the
analyzed code) and Control-Flow Graphs (CFG) (over the
statements of the analyzed code). The data model in VISU-
FLOW models this information with VFClass, VFMethod,
and VFUnit (a Unit is a statement in the analyzed code).
VFEdge and VFNode are used to represent the CFGs and
call graphs. Each VFUnit also contains its in-set and out-set.
In data-flow analysis, those sets contain the data-flow infor-
mation computed for each statement of the analyzed code
(i.e., they contain the intermediate results of the analysis).

The data model (except the in-sets and out-sets) is up-
dated every time the analyzed project is built: when Eclipse
Core’s IncrementalProjectBuilder is called, it calls
VISUFLOW’s Builder, passing the analyzed project to Soot’s
pre-analysis phases. Soot creates different Units, Methods,
Classes, CFGs and a call graph that is available from Soot’s
own data model: the Soot Scene. VISUFLOW taps into the
Scene and populates its own data model by wrapping
around the Soot constructs with its own. The Soot model
is generated from the Jimple intermediate representation,
which is then propagated into the VISUFLOW data model.

https://www.youtube.com/watch?v=BkEfBDwiuH4


7

The in-sets and out-sets are populated at run-
time, when the analysis writer runs the analysis on
the analyzed code. Eclipse’s debug component is run,
which calls VISUFLOW’s debug component through
ILaunchConfigurationDelegate2. VISUFLOW then
runs the analysis using Soot, and retrieves the in-sets and
out-sets by instrumenting the transfer function of the anal-
ysis. As the analysis is executed, VISUFLOW employs a Java
agent to establish inter-process communication between the
running Soot analysis and the VISUFLOW plugin. The latter
runs a TCP server that populates the data model. The corre-
sponding client is used to instrument the transfer function
of the analysis such that, at the beginning of the transfer
function, it sends the values present in the in-set and, at the
end, it sends the out-set that has been generated.

The data model contains the internal state of the analysis,
which is typically hidden from the analysis writer. This
state is used by the UI components of VISUFLOW and by
the Eclipse’s OSGi EventAdmin interface as an answer to a
user event (e.g., to show more information in a tooltip), to
display information in the different views of the VISUFLOW
plugin. The following debugging features can be obtained
from the data model: graph visuals (CFGs and call graphs),
access to intermediate results (in-sets and out-sets), access to the
intermediate representation (VFUnit in Jimple format).

Dual breakpoints and stepping: Traditional debuggers al-
low static-analysis writers to set breakpoints in the analysis
code only. When a user needs to debug an analysis at a
specific statement of the analyzed code, they have to use
conditional breakpoints to suspend the analysis for that
specific statement. This is quite limiting, as it requires the
user to know in advance which statements need inspec-
tion. VISUFLOW allows analysis writers to set breakpoints
in both the analysis code and the analyzed code, allow-
ing them to stop the execution for specific statements of
the analyzed code. This feature is achieved by extending
Eclipse’s breakpoints to simulate a second set of breakpoints
in the analyzed code. Breakpoints in the analyzed code
are transformed into conditional breakpoints in the transfer
function of the analysis code. If the user had previously set
breakpoints in the transfer function, a condition is added
to stop the execution only for the specific statements of the
analyzed code marked with the breakpoints in the analyzed
code. If no breakpoints exist in the analysis code, VISUFLOW
will create one at the start of the transfer function. This
system is transparent to the user: it creates the abstraction
of a second set of breakpoints by translating them into
conditional breakpoints. Likewise, VISUFLOW also simulates
separate stepping functionalities to help users step through
both code bases. In the analyzed code, this is achieved
by adding breakpoints at the successor statements of the
currently examined statement and removing them later.

Dual breakpoints and stepping events are set through the
Eclipse JDT, which transmits an IJavaModel of the project
under execution to the VISUFLOW debugger and builder.
When new in-set and out-set information are generated at
execution time, VISUFLOW populates the data model and –if
breakpoints are set– updates its UI views to highlight the
statements which the user steps through.

Unimplemented features: VISUFLOW implements the de-

1 2 13

4 5

6

Fig. 6: The Graphical User Interface of VISUFLOW. Features
1–5 are detailed in Section 3.2.

bugging features that the survey participants marked as
most important (RQ5-2) for a use in an IDE (Figure 4).
Other features such as omniscient debugging, automated test
generation and quick updates constitute significant bodies of
work which have been widely researched in the past [4], [7],
[22], [23], and whose integration we keep for future work.

3.2 Graphical User Interface of VisuFlow

Figure 6 presents VISUFLOW’s Graphical User Interface
(GUI). Two small-scale studies with three and five Soot users
were run during the implementation of VISUFLOW to test its
usability and integration into the Eclipse IDE.

Code: VISUFLOW shows the analysis code in a Java Editor 1
and the analyzed code in the Jimple View 2 side by side,
to help manipulating both code bases at the same time.
The analyzed code is shown in both Java and the Jimple
intermediate representation.

Graph visuals: To help the user better visualise the structure
of the analyzed code, VISUFLOW presents a Graph View 3
that displays the call graph and the CFGs of the different
methods of the analyzed code. By showing the intermediate
results on the edges of the CFGs, it provides a more visual
approach to debugging, allowing the user to determine
with a quick glance where a particular piece of data-flow
information is generated, killed, or transferred, instead of
manually inspecting the intermediate results statement by
statement. After our first study, we have chosen to lay
out the graphs using a Sugiyama-style graph-layering al-
gorithm [24], to add zooming and panning features, along
with a search bar that allows the user to locate a particu-
lar statement, and tooltip information. The graphs can be
customized through node drag-and-drop and coloring. To
draw the graphs, we use the GraphStream framework [25],
because it scales up to a large number of nodes and edges.

Other visuals: A set of different views displays various in-
formation that can be used to help reason about the analysis
code. The Results View 4 provides a compact summary of
the Graph View, with search and filter options: it details the
intermediate information for each application-code state-
ment and also allows users to mark specific statements with
custom tags. The Unit Inspection View 5 shows a list of
the statements of the analyzed program so that a user can
inspect details of how a statement is constructed (i.e., type
of the statement and types of its components). This feature
is useful to novice Soot users who might have little to no



8

knowledge of Jimple, but need to handle Jimple statements.
Both views are updated using the data model and have been
enhanced with search and filtering options.

Integration with Eclipse: During early evaluations of VI-
SUFLOW, we have discovered that having many views re-
porting different information on the same statement could
disrupt the user’s understanding of the analysis. When the
information shown on different views was not synchro-
nized, the users had to manually scroll through all of the
views to keep the focus on a given statement. VISUFLOW’s
views contain navigation menus and highlighting features
to allow users to switch between views more smoothly.

The top toolbar provides easy access to VISUFLOW’s
functionalities, such as: re-building the project (which re-
populates the data model if needed), running the anal-
ysis (which populates the in-sets and out-sets), and the
breakpoint and stepping functionalities for both code bases.
To stay consistent with Eclipse’s usability paradigms, the
dual breakpoint and stepping systems extend Eclipse’s (thus
allowing synchronization with the variable inspection view
and the stack frame view), the editors extend Eclipse’s Java
Editor, and the navigation functionalities are available on
right-click as well as in the Eclipse native menu.

3.3 Generalization of the approach

Based on the implementation of VISUFLOW, we describe
a high-level framework for applying the main desirable
debugging features described in Section 2.5 to different
types of static analysis for different environments.

1) Define a data model: the data model represents the in-
ternal state of the analysis that is typically not exposed
to the analysis writer. The data model must contain an
intermediate representation of the analyzed code and
the intermediate results of the analysis.

2) Generate the data model: the debugging tool must be able
to query the analysis framework to populate the data
model. Retrieving the intermediate results may need to
be done at runtime. For VISUFLOW, this retrieval in-
volves hooking into the Soot Scene and instrumenting
the transfer function.

3) Define breakpoints in the analyzed code: following the idea
of constructing conditional breakpoints on the analysis
code to simulate breakpoints in the analyzed code, the
debugging tool must be able to stop the analysis at
certain points of the analyzed code. Those points must
be defined beforehand. In the case of VISUFLOW, they
are the statements of the analyzed code.

4) Design a usable GUI to visualize the data model, and to
support the dual breakpoint system.

3.4 Reusing VISUFLOW

The constructs of VISUFLOW’s data model (call graph, CFGs,
in-sets and out-sets) are specific to data-flow analysis. The
design of VISUFLOW’s architecture separates VISUFLOW
from the underlying analysis framework. It is thus possible
to plug in another data-flow analysis framework such as
WALA [18], the IFDS/IDE solver Heros [3] or IDEal [26], if
it can expose its data model and transfer functions to the
VISUFLOW builder and debugger components.

4 USER STUDY

We conducted a user study to evaluate how useful VISU-
FLOW is as a debugging tool for static analysis through
answering the following research questions:
RQ6: Which features of VISUFLOW are most useful?
RQ7: Does VISUFLOW help identify and fix more errors

compared to Eclipse’s debugging environment?
RQ8: Does VISUFLOW help understand and debug analy-

ses better than other debugging environments?

4.1 Setup

We evaluate how users interact with VISUFLOW compared
to the standard Eclipse debugging environment [10] (here-
after, referred to as Eclipse). Each participant performed two
tasks: they debugged one static analysis with VISUFLOW and
one with Eclipse. In the latter case, participants had access to
the Eclipse debugging functionalities such as: breakpoints,
variable view, and stack frame view. We also provided the
Jimple intermediate representation of the analyzed code.

The two test analyses are hand-crafted taint analyses that
contain three errors each. Running either analysis on given
analyzed programs does not compute the correct results. For
each task, a participant had 20 minutes to identify and fix
as many errors as possible in the analysis code. Half of the
participants performed their first task with VISUFLOW, and
the other half with Eclipse. Both groups switched tools for
the second task. Before each task, participants performed
training tasks with a demo analysis to familiarize them-
selves with the tools. We calibrated the difficulty of the tasks
through a pilot study conducted on 6 participants.

During the two tasks, we counted the number of errors
that participants identified and fixed. We also logged how
long the mouse focus was for each view of the coding
environment to measure the time spent using each view.
Afterwards, participants were asked to fill a comparative
questionnaire of the two debugging environments, followed
by a short interview of their impressions of the tools. The
full-text answers presented in Section 4.3.3 were catego-
rized by two authors in an open card sort [15]. Because
each answer could be categorized in multiple categories,
we calculated a Cohen’s Kappa for each category of each
question. The average Kappa score over all questions and
categories is κ = 0.98 (median = 1, min = 0.66, max =
1, standard deviation σ = 0.07), which is above the 0.81
threshold, indicating an almost perfect agreement [17]. The
questionnaire, the anonymized answers, and the user study
results are available online [14].

4.2 Participants

The twenty participants of our user study (referred to as P1–
P20) are of diverse backgrounds: researchers in academia
(65%), researchers in industry (5%), and students (30%).
Eleven participants have less than a year experience writing
static analysis, 6 have 1–5 years of experience, and 3 have
more than 5 years of experience.

Participants rated their familiarity of data-flow analysis,
Eclipse, and Soot on a scale from 0 (novice) to 10 (expert).
The average score is 5.7 (min: 1, max: 9) for data-flow
analysis, 5.9 (min: 2, max: 8) for Eclipse, and 3.3 (min: 0, max:



9

TABLE 5: Main features of VISUFLOW and Eclipse that were
used, and the average time spent using each feature.

VISUFLOW Eclipse

#users Time (s) #users Time (s)

Java Editor 14 486 14 653
Graph View 14 201 n/a n/a
Jimple View 11 58 12 60
Breakpoints / Stepping 11 174 11 313
Variable Inspection 3 78 8 67
Results View 8 50 n/a n/a
Console 5 24 7 40
Drop Frame 5 12 3 5
Breakpoints View 3 13 2 110
Unit View 3 7 n/a n/a

7) for Soot. We thus gathered a variety of both novice and
expert users in data-flow analysis and Eclipse. However, ex-
pert Soot users are rare. Only P7 and P8 participated in our
initial survey whose results motivate the main features of
VISUFLOW. We have not observed any significant difference
between their results and other participants’ results.

4.3 Results
4.3.1 RQ6: Which features of VISUFLOW are most useful?
Table 5 shows the number of participants who used the
features of VISUFLOW and Eclipse, and the median time
they spent on each feature. Due to technical difficulties, we
could only process the logs of 14 participants. As expected,
the Java Editor is the most commonly used feature. The
Jimple View was also often used, showing that access to
the intermediate representation is helpful when debugging
static analysis. Other frequently used features include break-
points, stepping, and variable inspection. The VISUFLOW-
exclusive features that were used the most are the Graph
View and the Results View (100% and 57.1% of participants,
respectively), demonstrating the use of visualizations, and
the need to expose the intermediate results of the analysis.

Using VISUFLOW, participants spent 25.6% less time
using the Java Editor, and 44.4% less time stepping through
code. Instead, they spent this time using the Graph View, the
Results View, and the Variable Inspection View. This shows
that graph visualizations and access to the intermediate
results of the analysis are desirable features for debugging.
Participants used the Breakpoints View 88.2% less often in
VISUFLOW compared to Eclipse. We attribute this to VISU-
FLOW’s dual breakpoints which allow users to step through
both code bases simultaneously, sparing them the effort of
writing conditional breakpoints in the Breakpoints View.

The Unit View was only used by 3 participants, all of
whom were unfamiliar with Jimple. We believe that the
Unit View may be more popular for tasks requiring more
knowledge about Jimple statements (e.g., writing an anal-
ysis rather than debugging it). However, we cannot verify
this hypothesis with this study.

Using a X 2 test of independence, we did not find a
significant correlation (p > 0.05) between the participants’
background, their Net Promoter Scores (NPS) [27], and the
tool features that they used the most, suggesting that those
results are generalizable to all user groups represented by
our participants.

TABLE 6: Number of errors identified (I) and fixed (F) with
Eclipse (E) and VISUFLOW (V) by each participant.

Task 1 (E) Task 2 (V) Task 1 (V) Task 2 (E)

I F I F I F I F

P1 0 0 1 1 P11 2 2 1 1
P2 0 0 1 1 P12 1 0 2 1
P3 1 1 1 1 P13 2 2 1 1
P4 1 0 1 1 P14 2 1 0 0
P5 0 0 0 0 P15 1 1 0 0
P6 3 3 3 3 P16 1 1 2 1
P7 2 1 2 2 P17 2 1 1 1
P8 2 1 0 0 P18 2 1 1 1
P9 2 1 0 0 P19 3 2 2 1
P10 1 1 2 2 P20 1 0 0 0

Sum 12 8 11 11 17 11 10 7

RQ6: Graphs, access to the intermediate results and
to the intermediate representation, and dual break-
points, are the most used features in VISUFLOW (in
this order).

4.3.2 RQ7: Does VISUFLOW help identify and fix more er-
rors compared to Eclipse’s debugging environment?
Table 6 reports the number of errors identified and fixed by
each participant. An error is identified when a participant
could explain why it occurred in the analysis code. For
Task 1, participants identified and fixed 1.4× more errors
with VISUFLOW than with Eclipse. In particular, 17 errors
were identified and 11 were fixed with VISUFLOW compared
to 12 and 8 with Eclipse for that task. For Task 2, participants
identified 1.1× and fixed 1.6× more errors when using
VISUFLOW. Overall, 11 and 10 participants identified and
fixed, respectively, more errors with VISUFLOW than with
Eclipse. Using Eclipse, only 4 and 3 participants identified
and fixed more errors, respectively. The remaining partici-
pants found and fixed the same number of errors with both
tools. We do not compare the number of errors found by the
same participant with different tools, because the two tasks
were run on different, and thus incomparable, analyses.

Twelve of 20 participants are Eclipse users, making
the learning curve for the Eclipse tool less steep than for
VISUFLOW. Despite this factor, 7 of those 12 participants
found and fixed more errors with VISUFLOW than with their
original debugging environment.

RQ7: Using VISUFLOW, participants identified 25%
and fixed 50% more errors than with Eclipse.

4.3.3 RQ8: Does VISUFLOW help understand and debug
analyses better than other debugging environments?
After performing the tasks, participants filled out a com-
parative questionnaire to assess the perceived usefulness of
the two debugging environments. They rated VISUFLOW,
Eclipse, and their own debugging environment through an
NPS [27], evaluated how VISUFLOW and Eclipse helped
them perform the required tasks, and identified their pre-
ferred debugging features.

Overall, VISUFLOW was positively received. In the NPS
questions, the 20 participants rated their likelihood of rec-
ommending a debugging environment over another one to



10

a friend. VISUFLOW has a mean NPS score of 9.1 out of 10
(standard deviation σ = 1.1) compared to Eclipse, and 8.3
(σ = 1.7) compared to the participant’s own debugging
environment. Eclipse has a mean score of 1.4 (σ = 1.6)
compared to VISUFLOW, and 3.4 (σ = 3.3) compared to the
participant’s own debugging environment.

All participants answered that identifying errors was
easier with VISUFLOW (“It is pretty obvious that that’s what
static analysis needs.”). Sixteen found it easier to fix errors
with VISUFLOW; the other 4 participants answered that both
debugging environments made it equally easy. Seventeen
participants wrote that VISUFLOW helped them understand
the analysis code better (“What I was looking for in the first
coding environment [Eclipse] was given to me by the second
one [VISUFLOW]”), while 1 participant preferred Eclipse, and
2 remained neutral. To our surprise, the 12 participants who
were already familiar with Eclipse still preferred VISUFLOW,
showing that VISUFLOW is better suited than traditional
debugging tools for debugging static analysis.

When asked what they would use both debugging en-
vironments for, 16 participants wrote they would use VI-
SUFLOW to write and debug static analysis (“[I would use
VISUFLOW for] visualising an analysis and finding unexpected
values included or excluded from expected results”). Eleven
participants found Eclipse more useful for “standard software
development” or “general Java programming”.

Participants were asked which features of VISUFLOW
and Eclipse they would like to have in their own debugging
environments. Three participants liked Eclipse’s integrated
debugger, which echoes our survey findings (Table 2). Ten
participants asked for the Graph View (“visualising for prove-
nance was useful”). Seven required visualizing intermediate
results (“[VISUFLOW] is useful, because I get the abstract view
of the situation, what’s happening inside. Before [with the other
coding environment], you have to [go through all] the variables.”).
Five participants mentioned dual breakpoints (“[VISUFLOW]
is more comfortable; you can set Jimple breakpoints. It is clearly
better.”). Three asked for the synchronization between multi-
ple views (“I think [VISUFLOW] is helpful because of the linkage
between the Java code, the Jimple code and the graphic visual-
ization: all that I had to keep in my mind [earlier]”). The Jimple
View and the Unit Inspection View were only mentioned once.
Two novice Soot users wrote that they wanted “All of them”.
The features that participants find useful the most confirm
our survey findings (RQ5-2), and match the participants’
behaviour (RQ6).

Novice analysis writers noted a gentler learning curve
when using VISUFLOW: “I think this approach of debugging in
the CFG is easier to learn for starting with taint analysis”, “For
someone who doesn’t do this style of debugging analysis code
at all, it kind of surprised me how quickly I was able to track
down bugs for a bunch of code that I don’t understand.”

RQ8: Participants find VISUFLOW more useful than
Eclipse and than their own tools to debug analysis
code. In the questionnaire and interviews, they con-
firm that the features identified as most important in
our survey allow novice and expert analysis writers to
more easily understand and fix bugs in analysis code.

5 THREATS TO VALIDITY

In our survey, we reached out to 450 authors of static-
analysis papers published between 2014 and 2016. While
we covered a large chunk of active experts in the field, it
would be interesting to contact other static-analysis writers
whom we missed.

Q11 of the survey was misinterpreted by a few partic-
ipants: their answers do not match the explanation given
in Q12. For example, a participant wrote in Q12 that “de-
bugging SA [static analysis] is still a bit harder [than application
code]”, and gave Q11 a score of 7 (scale from 1 to 10),
denoting the contrary. In such clear cases, we reversed the
score (in this example, the new score is 4). We reversed only
12 scores out of 103 responses.

We conducted the user study in a controlled environ-
ment (20 participants, 20 minutes per task, two tasks) rather
than in a development setting. In practice, users would
have more time to investigate more complex analyses. Given
the time limits, we simplified the analyses while keeping
them as realistic as possible: we based them on ~ 300 LOC-
long taint analyses written by experienced students in our
graduate course, and introduced typical errors made by
those students. We verified with our pilot participants that
the tasks could be achieved within the time limits. To avoid
further external threats to validity, we recruited participants
from different backgrounds: academia, industry, students,
and professionals. VISUFLOW is built on top of Eclipse
and Soot, which are well-established both in industry and
academia. It would, however, be interesting to conduct a
future study in real-life conditions.

The times reported in Table 5 represent the use times of
the different views of VISUFLOW and Eclipse. They are not
exact, since participant attention may be divided between
multiple views while the mouse can focus on only one of
them. We argue that, for our user study, participants mainly
used the mouse to navigate between views. In the absence
of an eye-tracking device, our measurements approximate
real user data sufficiently well. Averaged over all users, the
relative difference between the times spent in each view is
still a reliable metric.

6 DISCUSSION AND FUTURE WORK

Our survey collects extensive data that we have not used
to its full extent in this article, not only about debugging
features for static analysis, but also about debugging fea-
tures for general application code, motivations for writing
static analysis (Q5), types of analysis written by participants
(Q2, Q7, Q8), detailed analysis examples (Q10), reasons why
participants debug static analysis (Q14), and why partici-
pants use a particular debugging environment (Q30). We
have made our data available online for others to use [14].

Some of the debugging features identified in our survey
can also be applied to debug other fields of software engi-
neering that handle two interacting code bases. It would be
interesting to explore how to support such use cases.

We designed VISUFLOW as a proof of concept to con-
firm the usefulness of some of the features identified in
our survey. However, its current implementation does not
gracefully scale up for two reasons: large graphs clutter the
interface, and long update times when re-running complex



11

analyses. We plan to address both issues in future work. It
would also be interesting to integrate more of the debugging
features found in the survey (e.g., omniscient debugging
and quick updates) in debugging tools like VISUFLOW.
VISUFLOW is available online [14], and we encourage con-
tributions by other researchers and practitioners.

7 RELATED WORK

Debugging static analysis has not been a major topic in the
software engineering community. In this section, we discuss
prior work on visualizing static-analysis information, exist-
ing debugging tools and techniques, and the usability of
static-analysis tools.

7.1 Debugging Static Analysis

We are not aware of any tool that is tailored to address
issues specific to debugging static analysis. In past work,
Andreasen et al. [28] suggest to employ soundness test-
ing, delta debugging, and blended analysis to debug static
analysis. Through examples, they discuss how the combi-
nation of these techniques (both pairwise and all three of
them) have helped them locate and fix bugs in their static
analyzer TAJS. Other tools also provide a subset of the
features in VISUFLOW, especially in terms of visualization
of information and data flows. For example, Atlas [29]
visualizes data-flow paths based on the abstract syntax tree
(AST) of a given program. To improve user understanding
and evaluating error reports, Phang et al. [30] present a
tool that visualizes program paths to help the user track
where an error originates from. Unlike VISUFLOW, none of
these tools enable static-analysis writers to debug their own
analyses, but are rather tailored to the users of static-analysis
tools (e.g., code developers), and therefore focus more on
visualization features than debugging features.

7.2 Standard Debugging Tools

Most programming languages’ runtime environments are
shipped with debuggers provided by the language main-
tainers (e.g., GDB [12]). Many IDEs, such as Eclipse [10] and
IntelliJ [11], integrate debugging functionalities for major
programming languages natively in their tool sets. Since
VISUFLOW is integrated into Eclipse, it uses all available fea-
tures such as breakpoints and stepping. As our survey and
user study have shown, such tools are designed for general
application code, and do not have specific support for static
analysis. There exist more complex debugging techniques
such as delta debugging [31], omniscient debugging [22],
and interrogative debugging [32]. However, they are not
integrated into the most commonly used debugging tools.

7.3 Usability of Static-Analysis Tools

To our knowledge, this article presents the first large-scale
survey of static-analysis developers. Most of the prior sur-
veys of developers are targeted towards static-analysis users
instead of writers. Ayewah et al. [33] present a survey of
FindBugs [9] users to determine their usage habits and
how they deal with the displayed warnings. The authors
conclude that static-analysis tools have been widely adopted

by their participants, but are not used regularly, and with-
out customization. Christakis and Bird [34] asked 375 de-
velopers within Microsoft about their attitudes towards
static-analysis tools. The features that participants deemed
most important include: better usability, better responsive-
ness, and pre-configured prioritization of security and best-
practice aspects when it comes to error reporting. Johnson
et al. [35] investigated the warning and error reports of the
static analyzer FindBugs, the Eclipse Java Compiler, and
the code-coverage tool Eclemma [36]. Nguyen Quang Do
et al. [7] evaluated the impact of their Just-in-Time static
analysis on the workflow of developers who use such tools
to detect errors in their code. Phang et al. [30] also tested
their program-path visualization tool through a user study.
However, those surveys and user studies aim to assess the
usability of static analyzers from the end-user perspective.
This article—based on our survey—presents requirements
for a debugging tool for static-analysis writers, and then
assesses the usability of such a tool.

8 CONCLUSION

Writing and debugging static analysis is a difficult task.
We surveyed 115 static-analysis writers from different back-
grounds and show that current debugging tools are not
always sufficient to properly support the development of
static analysis. In this article, we report the main causes of
bugs in static analysis, show the major tool features used
by analysis writers to debug their analyses, discuss their
limitations, and identify features that would best support
debugging static analysis.

We present VISUFLOW, a debugging environment de-
signed specifically for debugging static analysis, including
features that we identified in our survey. In a comparative
user study between VISUFLOW and Eclipse, we empirically
show that VISUFLOW enables analysis writers to debug
static analysis more efficiently. VISUFLOW was well received
by analysis writers, confirming our survey’s findings, and
validating the usefulness of its debugging features.

This work can be used to design better tool support for
debugging static analysis and help analysis writers to secure
application code.

ACKNOWLEDGMENTS

We thank the participants of our surveys and user studies
for their invaluable input. We would also like to thank
Michael Schlichtig, Henrik Niehaus, Shashank Subramanya,
Kaarthik Radhakrishna, Zafar Syed, Nishitha Shivegowda,
Yannick Kouotang Signe, and Ram Muthiah Bose Muthian
for their work on VISUFLOW. This research was supported
by a Fraunhofer Attract grant as well as the Heinz Nixdorf
Foundation. This work has also been partially funded by the
DFG as part of project E1 within the CRC 1119 CROSSING,
and was supported by the Natural Sciences and Engineering
Research Council of Canada.

REFERENCES

[1] A. D. Blog, “How we fought bad apps and malicious developers
in 2017,” https://www.appbrain.com/stats/number-of-android-
apps, 2018.



12

[2] Appbrain, “Number of android applications,”
https://www.appbrain.com/stats/number-of-android-apps,
2018.

[3] E. Bodden, “Inter-procedural data-flow analysis with IFDS/IDE
and Soot,” in International Workshop on State of the Art in Java
Program Analysis (SOAP), 2012, pp. 3–8. [Online]. Available:
http://doi.acm.org/10.1145/2259051.2259052

[4] B. G. Ryder, “Incremental data flow analysis,” in Proceedings
of the 10th ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages, ser. POPL ’83. New York, NY,
USA: ACM, 1983, pp. 167–176. [Online]. Available: http:
//doi.acm.org/10.1145/567067.567084

[5] G. Liang, Q. Wu, Q. Wang, and H. Mei, “An effective defect
detection and warning prioritization approach for resource leaks,”
in Computer Software and Applications Conference (COMPSAC), 2012,
pp. 119–128.

[6] J. Xie, H. Lipford, and B.-T. Chu, “Evaluating interactive support
for secure programming,” in Conference on Human Factors in
Computing Systems (CHI), 2012, pp. 2707–2716. [Online]. Available:
http://doi.acm.org/10.1145/2207676.2208665

[7] N. Q. D. Lisa, A. Karim, L. Benjamin, B. Eric, S. Justin, and
M.-H. Emerson, “Just-in-time static analysis,” in Proceedings of
the 26th ACM SIGSOFT International Symposium on Software
Testing and Analysis, ser. ISSTA 2017. New York, NY,
USA: ACM, 2017, pp. 307–317. [Online]. Available: http:
//doi.acm.org/10.1145/3092703.3092705

[8] A. J. Ko and B. A. Myers, “Barista: An implementation framework
for enabling new tools, interaction techniques and views in code
editors,” in Conference on Human Factors in Computing Systems
(CHI), 2006, pp. 387–396.

[9] H. Shen, J. Fang, and J. Zhao, “Efindbugs: Effective error ranking
for findbugs,” in International Conference on Software Testing, Verifi-
cation and Validation (ICST), 2011, pp. 299–308.

[10] “Eclipse,” https://eclipse.org/, 2018.
[11] “Intellij,” https://www.jetbrains.com/idea/, 2018.
[12] “Gdb: The gnu project debugger,”

https://www.gnu.org/software/gdb/, 2018.
[13] R. Vallée-Rai, E. Gagnon, L. J. Hendren, P. Lam, P. Pominville,

and V. Sundaresan, “Optimizing Java bytecode using the Soot
framework: Is it feasible?” in CC, 2000, pp. 18–34. [Online].
Available: http://dx.doi.org/10.1007/3-540-46423-9_2

[14] N. Q. D. Lisa, K. Stefan, H. Patrick, A. Karim, and B. Eric, “Debug-
ging static analysis,” https://arxiv.org/abs/1801.04894, 2018.

[15] W. Hudson, “Card sorting,” 2013.
[16] S. Viswanathan and I. B. Shrikant, “Observer agreement

paradoxes in 2x2 tables: Comparison of agreement
measures,” in BMC Medical Research Methodology, 2014.
[Online]. Available: https://bmcmedresmethodol.biomedcentral.
com/articles/10.1186/1471-2288-14-100

[17] J. R. Landis and G. G. Koch, “The measurement of observer
agreement for categorical data,” in Biometrics, 1977, pp. 159–174.

[18] “Wala,” http://wala.sourceforge.net/wiki/index.php, 2018.
[19] “Llvm,” http://llvm.org/, 2018.
[20] “Vim,” http://www.vim.org/, 2018.
[21] “Emacs,” https://www.gnu.org/software/emacs/, 2018.
[22] B. Lewis, “Debugging backwards in time,” CoRR, vol.

cs.SE/0310016, 2003. [Online]. Available: http://arxiv.org/abs/cs.
SE/0310016

[23] J. Rushby, “Verified software: Theories, tools, experiments,”
B. Meyer and J. Woodcock, Eds. Berlin, Heidelberg: Springer-
Verlag, 2008, ch. Automated Test Generation and Verified
Software, pp. 161–172. [Online]. Available: http://dx.doi.org/10.
1007/978-3-540-69149-5_18

[24] K. Sugiyama, S. Tagawa, and M. Toda, “Methods for visual under-
standing of hierarchical system structures,” IEEE Transactions on
Systems, Man & Cybernetics, vol. 11, no. 2, pp. 109–125, 1981.

[25] “Graphstream,” http://graphstream-project.org/, 2018.
[26] J. Späth, K. Ali, and E. Bodden, “Ideal: Efficient and precise

alias-aware dataflow analysis,” in 2017 International Conference
on Object-Oriented Programming, Languages and Applications
(OOPSLA/SPLASH). ACM Press, Oct. 2017. [Online]. Available:
http://bodden.de/pubs/sab17ideal.pdf

[27] F. F. Reichheld, “The one number you need to grow,” Harvard
Business Review, vol. 81, no. 12, pp. 46–55, 2003.

[28] E. S. Andreasen, A. Møller, and B. B. Nielsen, “Systematic ap-
proaches for increasing soundness and precision of static analyz-

ers,” in Proceedings of the 6th ACM SIGPLAN International Workshop
on State Of the Art in Program Analysis. ACM, 2017, pp. 31–36.

[29] T. Deering, S. Kothari, J. Sauceda, and J. Mathews, “Atlas:
A new way to explore software, build analysis tools,”
in Companion Proceedings of the 36th International Conference
on Software Engineering, ser. ICSE Companion 2014. New
York, NY, USA: ACM, 2014, pp. 588–591. [Online]. Available:
http://doi.acm.org/10.1145/2591062.2591065

[30] Y. P. Khoo, J. S. Foster, M. Hicks, and V. Sazawal, “Path
projection for user-centered static analysis tools,” in Proceedings
of the 8th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering, ser. PASTE ’08. New
York, NY, USA: ACM, 2008, pp. 57–63. [Online]. Available:
http://doi.acm.org/10.1145/1512475.1512488

[31] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-
inducing input,” IEEE Trans. Software Eng., vol. 28, no. 2, pp. 183–
200, 2002.

[32] A. J. Ko and B. A. Myers, “Designing the whyline: a debugging
interface for asking questions about program behavior,” in Proceed-
ings of the 2004 Conference on Human Factors in Computing Systems,
CHI 2004, Vienna, Austria, April 24 - 29, 2004, 2004, pp. 151–158.

[33] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, and
W. Pugh, “Experiences using static analysis to find bugs,” IEEE
Software, vol. 25, pp. 22–29, 2008, special issue on software devel-
opment tools, September/October (25:5).

[34] M. Christakis and C. Bird, “What developers want and need
from program analysis: An empirical study,” in Proceedings of
the 31st IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE 2016. New York, NY, USA: ACM, 2016,
pp. 332–343. [Online]. Available: http://doi.acm.org/10.1145/
2970276.2970347

[35] B. Johnson, R. Pandita, J. Smith, D. Ford, S. Elder, E. Murphy-
Hill, S. Heckman, and C. Sadowski, “A cross-tool communication
study on program analysis tool notifications,” in Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, ser. FSE 2016, 2016, pp. 73–84.

[36] “Eclemma,” http://www.eclemma.org/, 2018.

http://doi.acm.org/10.1145/2259051.2259052
http://doi.acm.org/10.1145/567067.567084
http://doi.acm.org/10.1145/567067.567084
http://doi.acm.org/10.1145/2207676.2208665
http://doi.acm.org/10.1145/3092703.3092705
http://doi.acm.org/10.1145/3092703.3092705
http://dx.doi.org/10.1007/3-540-46423-9_2
https://arxiv.org/abs/1801.04894
https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/1471-2288-14-100
https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/1471-2288-14-100
http://arxiv.org/abs/cs.SE/0310016
http://arxiv.org/abs/cs.SE/0310016
http://dx.doi.org/10.1007/978-3-540-69149-5_18
http://dx.doi.org/10.1007/978-3-540-69149-5_18
http://bodden.de/pubs/sab17ideal.pdf
http://doi.acm.org/10.1145/2591062.2591065
http://doi.acm.org/10.1145/1512475.1512488
http://doi.acm.org/10.1145/2970276.2970347
http://doi.acm.org/10.1145/2970276.2970347


13

Lisa Nguyen Quang Do is a doctoral re-
searcher in the ’Secure Software Engineering’
group at Paderborn University. She has received
her MSc. in Computer Science from EPFL in
2014. Her research focuses on improving the
usability of analysis tools for code developers
through different aspects that range from the
optimization of the analysis algorithm to the im-
plementation of its framework to the usability of
its interface.

Stefan Krüger received a Master’s Degree in
Computer Science at Otto-von-Guericke Uni-
versity in Magdeburg and is a doctoral re-
searcher at Paderborn University, and a member
of the collaborative research center CROSSING.
CROSSING aims to devise future-proof cryptog-
raphy that is sound and easy to use even for
non-experts. In that vein, Krüger’s main research
interests are API usability, DSLs for the speci-
fication of security properties of programs, and
detection of cryptographic-API misuses.

Patrick Hill received his B.Sc. in Computer
Science from Technische Universität Braun-
schweig. He currently studies software engineer-
ing at Paderborn University. His main interest is
IT security.

Karim Ali is an Assistant Professor in the De-
partment of Computing Science at the University
of Alberta. His research interests are in pro-
gramming languages and software engineering,
particularly in scalability, precision, and usability
of program analysis tools. His work ranges from
developing new theories for scalable and precise
program analyses to applications of program
analysis in security, Just-in-Time compilers, and
high-performance computing.

Eric Bodden is a full professor for Secure Soft-
ware Engineering at the Heinz Nixdorf Institute
of Paderborn University, Germany. He is fur-
ther the director for Software Engineering at the
Fraunhofer Institute for Engineering Mechatronic
Systems. Prof. Bodden has been recognized
several times for his research on program anal-
ysis and software security, most notably with the
German IT-Security Price and the Heinz Maier-
Leibnitz Price of the German Research Founda-
tion, as well as with several distinguished paper

and distinguished reviewer awards.


	Introduction
	Survey
	Survey Design
	Result Extraction
	Participants
	Results
	RQ1: Which types of analysis are most commonly written?
	RQ2: Do analysis writers think that analysis code is harder/easier to debug than application code, and why?
	RQ3: Which errors are most frequently debugged in analysis code and application code?
	RQ4: Which tools do analysis writers use to support debugging of analysis code and application code?
	RQ5: What are the limitations of the existing debugging tools and which features are needed to debug analysis code?

	Summary and Discussion

	Visuflow: Visual Support for Debugging Data-Flow Analysis in Eclipse
	Architecture of VisuFlow
	Graphical User Interface of VisuFlow
	Generalization of the approach
	Reusing Visuflow

	User Study
	Setup
	Participants
	Results
	RQ6: Which features of Visuflow are most useful?
	RQ7: Does Visuflow help identify and fix more errors compared to Eclipse's debugging environment?
	RQ8: Does Visuflow help understand and debug analyses better than other debugging environments?


	Threats to Validity
	Discussion and Future Work
	Related Work
	Debugging Static Analysis
	Standard Debugging Tools
	Usability of Static-Analysis Tools

	Conclusion
	References
	Biographies
	Lisa Nguyen Quang Do
	Stefan Krüger
	Patrick Hill
	Karim Ali
	Eric Bodden


