
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

Explaining Static Analysis with Rule Graphs
Lisa Nguyen Quang Do, and Eric Bodden

Abstract—As static data-flow analysis becomes able to report increasingly complex bugs, using an evergrowing set of complex
internal rules encoded into flow functions, the analysis tools themselves grow more and more complex. In result, for users to be able to
effectively use those tools on specific codebases, they require special configurations—a task which in industry is typically performed by
individual developers or dedicated teams.
To efficiently use and configure static analysis tools, developers need to build a certain understanding of the analysis’ rules, i.e., how
the underlying analyses interpret the analyzed code and their reasoning for reporting certain warnings. In this article, we explore how
to assist developers in understanding the analysis’ warnings, and finding weaknesses in the analysis’ rules. To this end, we introduce
the concept of rule graphs that expose to the developer selected information about the internal rules of data-flow analyses. We have
implemented rule graphs on top of a taint analysis, and show how the graphs can support the abovementioned tasks.
Our user study and empirical evaluation show that using rule graphs helps developers understand analysis warnings more accurately
than using simple warning traces, and that rule graphs can help developers identify causes for false positives in analysis rules.

Index Terms—Program analysis, Data-flow analysis, Rule graphs, Analysis configuration, Explainability, Usability

F

1 INTRODUCTION

To detect bugs and vulnerabilities in their code, more
and more developers and companies use static analysis,
a method of reasoning about the runtime behaviour of
a program from its source code without executing it. In
past years, researchers and practitioners have improved the
capabilities of static analyses, enabling them to find increas-
ingly complex bugs [1], [2], support more languages [3], and
report more accurate warnings [4], [5] in a faster time [6], [7].

As analyses detect more complex warnings, reporting
and explaining such warnings to the developer becomes
more difficult. In practice, analyses are known to report
many false positives. Some are due to over-approximations
(e.g., for collections or arrays), others to missing knowl-
edge about the particular codebase (e.g., specific libraries
or coding constructs). An analysis interprets the source
code and builds its own understanding of how it works.
Sometimes, this understanding may not match the devel-
oper’s, which results in uncertainties, a wrong treatment of
critical warnings, wrong tool configurations, or even tool
abandonment [8], [9].

As a result, analysis tools are typically configured by
dedicated teams (or the developers themselves, depending
on the company’s resources) before they are deployed in
a company. Such teams typically configure the analysis
options and edit the analysis rules to customize them to
particular code bases [8]. Analysis rules determine how
the analysis reasons about the analyzed code. In the case
of data-flow analysis, those rules are encoded as flow /
transfer functions.

Past research in static-analysis usability highlights lim-
itations in explainability of the analysis warnings and cus-
tomization of the analysis rules [8]–[11]. To configure and use
static analysis tools to their full potential, developers and

• L. Nguyen Quang Do was with Paderborn University (now with Google).
E-mail: lisa.nguyen@upb.de

• E. Bodden is with Paderborn University and Fraunhofer IEM.
E-mail: eric.bodden@uni-paderborn.de

configuration teams need to understand analysis warnings in
order to determine which ones are true positives and which
ones can reveal problems in the analysis rules that they
can then correct. Developers have external knowledge about
the code base that the analysis does not possess, and the
contribution of such heuristics can help direct the analysis
in yielding more accurate warnings.

The understanding task requires the developers to build
a solid understanding of how the analysis rules work for
their code base. Static analyses are typically used as black
boxes, their warnings being post-processed using informa-
tion that is external to the analysis rules to provide develop-
ers with more complete warnings (e.g., warning type, code
location). In an effort to bridge the understandability gap,
we instead propose to make use of internal information:
how the analysis interprets the analyzed code. Focusing
on data-flow analysis, we introduce the novel concept of
rule graphs that encode internal analysis information, and
explain how to use them to give developers more insight
into the analysis’ reasoning. In our evaluation, we show
that the use of rule graphs can improve the developers’
understanding of analysis warnings, and help them identify
weak or missing analysis rules that can then be corrected.

This article makes the following contributions:
• It advocates for more transparency of the analysis’

internal behaviour to address the explainability and
customization problems of static analysis tools.

• It introduces the concept of rule graphs to expose the
analysis’ internal behaviour, and explains how to adapt
it to any data-flow analysis solver.

• It details how to use rule graphs in the tasks of un-
derstanding warnings and identifying weak or missing
analysis rules.

• It presents an implementation of the concept and tasks
for taint analysis on Java and Android applications with
an IntelliJ plugin: MUDARRI.

• With a user study on 22 participants, it shows that
the use of rule graphs significantly improves warning

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

1. String [] s = new String[5];

2. String uID = request.getParameter("userId");

3. s[0] = uID;

4. s[1] = "safe";

5. Statement st = conn.createStatement();

6.

7. String q1 = "SELECT * FROM User WHERE uID=’" + s[1] + "’;";

8. ResultSet res = st.executeQuery(q1);

9.

10.String url = "https://" + s[1] + ".company.com";

11.response.sendRedirect(url);

12.

13.String q2 = "SELECT * FROM User WHERE uID=’" + uID + "’;";

14.ResultSet res = st.executeQuery(q2);

uID, l.2

s, l.3

url, l.10

url, l.11

SOURCE

ARRAY

LOCAL

SINK

<END>

uID, l.2

q2, l.13

q2, l.14

SOURCE

LOCAL

SINK

<END>

uID, l.2

s, l.3

q1, l.7

q1, l.8

SOURCE

ARRAY

LOCAL

SINK

<END>

Figure 1: Potential SQL Injections (line 8, line 14) and Open Redirect (line 11), and their Simplified Rule Graphs. The first
SQL injection and the open redirect are false positives.

understandability compared to traditional code traces
that only report on the path of the warning.

• Through an empirical evaluation on DroidBench [2], it
shows that rule graphs can help developers discover
weak or missing analysis rules.

2 MOTIVATING EXAMPLE

In this section, we provide background on data-flow anal-
ysis and we show how exposing an analysis’ internal rules
can assist the developer in two different tasks: understand-
ing analysis warnings and identifying weak or missing anal-
ysis rules. To illustrate them, we use the running example
in Figure 1. The example contains an SQL injection [12]
from the source getParameter() at line 2 to the sink
executeQuery() at line 14. The SQL injection at line 8
and the open redirect [13] (line 11) do not occur, because q1
and url contain the safe string “safe” from s[1].

2.1 Background on Data-Flow Analysis
Data-flow analysis is a branch of static analysis in which data
is tracked along the control-flow of the program through
a Control Flow Graph (CFG) that models in which or-
der the statements of the program are executed. In the
example Figure 1, the CFG would be linear, from top
to bottom, with each node being a statement (a line of
code). SQL injections and open redirects can be detected
using a taint analysis, a type of static data-flow analysis
that tracks tainted data through a program from source
methods (e.g., getParameter()) to sink methods (e.g.,
executeQuery() or sendRedirect()). In the example,
a taint analysis would track potential user-controlled data
starting from the source at line 2, and track the variables
in which the data is stored until it reaches a sink. Then, it
would report a potential warning.

The monotone framework [14] is often used to define
and solve classical data-flow analysis problems. We use it in
this article for our formalizations. In the monotone frame-
work, the analysis solver flows data-flow facts along the CFG
in a fixed point iteration as shown in Algorithm 2 (ignoring

the ′ signs and the mi highlighted in gray). The analysis
starts at the program’s entry points (typically the main
function) (line 2), and keeps a worklist of the statements it
visits. For each statement, it applies the flow function fstmt,
which generates data-flow facts that it stores in memory
(line 7). Those data-flow facts are used as the input to the
flow function for the successor statements in the CFG, at
the next iterations (line 10). If a statement has multiple
predecessors, we use a merge function u to merge the data-
flow facts from all of the predecessors before applying the
flow function (line 6). The iteration stops when a fixed point
is reached, meaning that the data-flow facts do not change
anymore (line 9). In the monotone framework, the fixed
point iteration is guaranteed to eventually reach a fixed
point and terminate.

The flow function fstmt(in) describes how, from an
in-set of data-flow facts in = (d1, ..., dn), di ∈ D, and a
statement of the program, we obtain an out-set of new data-
flow facts out = (d1, ..., dm), dj ∈ D. The flow function
thus describes how the analysis interprets the statements
of the program. It consists in a set of analysis rules. In
the case of our taint analysis, D is the set of variables of
the program. The in-set corresponds to the set of tainted
variables (variables that may contain malicious data) before
the statement is executed, and the out-set corresponds to the
set of tainted variables after the statement is executed. The
analysis reports a warning when a tainted variable reaches a
sink statement. Algorithm 1 (ignoring the parts highlighted
in gray) shows a flow function for a taint analysis. It contains
five analysis rules describing how to handle different types
of statements: sources (line 6), sinks (line 15), assignments to
arrays (line 11) and to local variables (line 13), and variables
that are not affected by the statement (line 3).

Let us consider the source rule (line 6). The analysis
detects a source if the statement is an assignment statement,
and if the right side of the assignment is a known source
(e.g., x = getSecret();). If this is the case, the left side
of the statement must be tainted, as it now contains a
potential secret. The flow function does this by generating

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

the corresponding data-flow fact x (line 7), and adding it to
the out-set (line 8).

Similarly, if the statement is an assignment statement
and the right side of the statement is already tainted (if it is
in the in-set) (line 9), then the left side must also be tainted
(line 12 and line 14). For example, for x = y;, if y contains
a secret, then x will also contain it after the statement. In
the case of a sink statement (e.g., sendByEmail(x);), if
the statement is a known sink and if its parameter is tainted
(line 15), we report a potential data leak (line 18), and we
transfer the taint to the next statement (line 17). Note that
all tainted variables that are not affected by the statement
are transferred as well (line 3). E.g., at x = y;, if z was
tainted before, it should still be tainted after.

Let us focus on the particular example of the assignment
to an array (line 11). The flow function marks that if the
statement is an assignment statement, if the right side of the
assignment is tainted (line 9), and if the left side is an array
(line 11), then the array should be tainted (line 12). This par-
ticular rule is an over-approximation: instead of tracking the
individual elements, the entire array is considered tainted
if one of its elements is, thus leading to the false positives
down the line: the first SQL injection and the open redirect.

2.2 Understand a Warning
To configure or use an analysis, developers must be able to
evaluate if the warnings it yields are correct, and if they are
of interest to their particular situation. To do so, they have to
gain a full understanding of the warnings, and in particular,
of why the analysis thinks they are legitimate bugs. Current
tools generally provide external information that can range
from vulnerability descriptions to more complex data such
as warning severity, detailed traces, exploit examples, or
even fix suggestions.

An often overlooked aspect is that the analysis algorithm
can be faulty or approximative, and can misinterpret certain
parts of the code. For example, for scalability, static analyses
often over-approximate certain constructs, such as arrays or
collections. In Figure 1, such an analysis would consider
all elements in s as dangerous after line 3, and mistakenly
report the SQL injection line 8 and the open redirect.

Even for a developer who knows how the vulnerabilities
occur, figuring out why the analysis reports those two false
positives is not straightforward, because the array over-
approximation is internal to the analysis and thus, com-
pletely hidden from the developer. Analysis shortcomings
may come from mishandling varied coding concepts: col-
lections, aliasing, multithreading, etc. We argue that making
the analysis’ internal rules more explicit to the developer
might address this issue and improve the understandability
of analysis results.

2.3 Identify Weak and Missing Analysis Patterns
Because of its necessity to over-approximate, static analysis
is known to report too many false positives [8], [9]. To help
developers differentiate between true and false positives,
many analysis tools calculate a confidence metric (how
confident the analysis is that a warning is a true positive)
generally based on external features, such as the bug type
(e.g., SQL injection) [15], [16].

False positives are mainly due to the analysis’ weak-
nesses, i.e., to the analysis rules that do not interpret the
analyzed code as it should. For example, arrays over-
approximations such as described above may result in false
positives. Over time, developers may deduce some of the
analysis’ weaknesses. Allowing them to integrate them in
the analysis and to modify the analysis rules would help
reduce the number of false warnings.

To hasten this process, analysis tools can assist develop-
ers discover which analysis rules—or rule combinations—
are at fault, or are missing. We differentiate between weak
rules and missing rules. The former correspond to exist-
ing analysis rules that create false positives, e.g., over-
approximations such as the write-access to the array at line 3
that mark the warnings line 8 and line 11 as rather likely
false positives in Figure 1. The latter correspond to rules that
are not present to in the analysis, and which absence also
causes false positives. In this article, we argue that from a set
of known true and false positives, we can help developers
identify weak or missing analysis rules.

3 RULE GRAPHS

To address the tasks presented in Section 2, we introduce
the concept of rule graphs that exposes the analysis’ internal
information to the end-user, and show how to modify
existing data-flow analyses to support rule graphs.

3.1 Running Example and Definition

Let us consider the running example of Figure 1 and a taint
analysis that over-approximates array elements to the entire
array. The analysis would report the two SQL injections and
the open redirect by tracking the variables containing the
tainted data from the source getParameter() to the sinks
executeQuery() and sendRedirect(). Figure 1 shows
the three rule graphs representing each of the analysis
warnings. For example, following the edges of the second
graph (open redirect), we see that the data is first assigned
to uID at line 2, then to s at line 3 (because of the over-
approximation of s[0] to s), and finally to url at line 10
(over-approximation of s[1] to s) before being reported at
line 11. In addition to the code-related information found in
the edge labels, the nodes encode the internal analysis rules.
For the open redirect, the root node is the source, creating
the taint to uID. The taint is then assigned to s because it is
an array, and then transferred to the local variable url by
a part of the analysis which handles locals and is different
from the one which handles array assignments. Sinks are
handled separately, which is represented by the SINK node.
The warning stops at an artificial node <END>, introduced
so that its edge from the sink stores the last step of the trace.

The nodes of the rule graphs mark the different rules
of the analysis that handle the different constructs of the
analyzed code, as highlighted in gray in the flow function
of our taint analysis, in Algorithm 1. For a given statement
s and a set of variables tainted before the statement in,
it generates, transfers, and kills taints, yielding an updated
set of tainted variables after the statement: out. The five
analysis rules described in Section 2.1 are encoded in this
flow function: the generation of taints when a source is

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

Algorithm 1 Flow function for a taint analysis for Figure 1,
with an over-approximation of arrays at line 11. The marker
information is shown in gray.

1: procedure fstmt(〈in〉)
2: out := ∅
3: for d in in do
4: d′ := newDataFlowFact(d, stmt)
5: out = out ∪ (d′ , ({d}, ID))

6: if isAssignstmt(stmt) ∧ rightIsSource(stmt) then
7: d′ := newDataFlowFact(leftSide(stmt), stmt)
8: out = out ∪ (d′ , ({〈ZERO〉}, SOURCE))

9: if isAssignstmt(stmt) ∧ (rightSide(stmt) ∩ in 6= ∅) then

10: d′ := newDataFlowFact(leftSide(stmt), stmt)
11: if leftIsArray(stmt) then
12: out = out ∪ (d′ , ({d},ARRAY))
13: else
14: out = out ∪ (d′ , ({d},LOCAL))

15: if isSink(stmt) ∧ sinkParameter(stmt) ∈ in then
16: d′ := newDataFlowFact(sinkParameter(stmt), stmt)
17: out = out ∪ (d′ , ({d}, SINK))
18: report(d′)
19: return out

detected (denoted with the SOURCE marker, line 6), the
taint transfers for arrays (ARRAY, line 11) and local variables
(LOCAL, line 13), the taint transfer and reporting at sinks
(SINK, line 15), and the transfer of existing taints (ID,
line 3). Graph nodes thus correspond to rule markers and
give insight into how the analysis works. We have removed
the ID nodes from Figure 1 to simplify the example.

We define a rule graph G = (V, E) as a set of nodes V
(the set of markers in the analysis) and edges E , which labels
contains code locations.
Size of the rule graphs: Depending on which rules the de-
velopers wish to track, different markers can be chosen. As
a result, rule graphs can approximate a traditional warning
trace, or be vastly different. However, they remain at worst
in the size range of a traditional trace (O(tm) with t the size
of the trace, and m the number of markers).

When reasoning about analysis rules without taking into
account the code base (e.g., for determining weak analysis
rules), code-specific information is not needed. As a result,
the edge labels can be dropped, making the rule graphs
much smaller and simpler to handle. In the example Fig-
ure 1, the first two graphs would then become identical.

3.2 Generating Rule Graphs
We propose a general recipe to modify an existing data-flow
analysis expressed in the monotone framework [14] in order
to support rule graphs. This is done in two phases: as the
analysis runs, it stores rule marker information, and after it
terminates, it uses it to extract the individual rule graphs.

3.2.1 Collecting Rule Marker Information
Algorithm 2 presents the traditional fixed-point iteration
algorithm of data-flow analyses that applies the flow func-
tion fstmt to the statements of the program until the out-

Algorithm 2 Fixed-Point Algorithm for a Data-Flow Analy-
sis. The modifications to support rule graphs are shown in
gray.

1: procedure ANALYZE
2: wl := entrypoints()
3: while wl 6= ∅ do
4: pop stmt off wl
5: OLD := { d ∈ OUT[stmt] }
6: IN[stmt] := u′ { (d ,mi) ∈ OUT[r] | r ∈ pred(stmt) }
7: OUT[stmt] := f ′stmt (IN[stmt])
8: NEW := { d ∈ OUT[stmt] }
9: if OLD 6= NEW then

10: wl ∪ = successors(stmt)
f ′stmt is a modified flow function, defined in Figure 2.
u′ is the merge function, adapted to handle marker
information.

f ′stmt(in) = f ′stmt({(d1,mi1), ..., (dn,min)})
= {(e1, ni1), ..., (em, nim)}

with di ∈ D,
ei ∈ D such that fstmt(d1, ..., dn) = {e1, ..., em},
fstmt the original flow function,
mii = (Di, rule_markeri) such that Di ⊆ D,
nii = (Di, rule_markeri) such that Di ⊆ {d1, ..., dn}.

Figure 2: The Modified Flow Function.

sets stabilize, and the modifications made to support rule
graphs. The main change is the introduction of rule marker
and predecessor information, highlighted in gray. As shown
in Figure 2, the modified flow function does not only report
data-flow facts (tainted variables in terms of taint analysis)
in its out-set: it encapsulates each data-flow fact with marker
information (mi) containing the data-flow fact’s predecessors
and a rule marker explaining the reason why the data-flow
information was transferred from the predecessors to the
current fact. For example, in Algorithm 1, the rule at line 11
states that if the right side of an assignment statement is
tainted (if the variable is in the in set), the array on the
left side of the assignment should be tainted. As a result,
at line 12, d′, the data-flow fact representing the left side
of the assignment is marked with its predecessor d and
the rule marker ARRAY. This notation means that the taint
from d is transferred to d′ at statement s because of an
assignment to an array. The merge operator u (line 6) should
also be adapted to merge marker information along with the
original data-flow facts.

Soundness and termination: The modifications added to
the analysis do not affect its termination and soundness
since the marker information piggybacks on the data-flow
facts without influencing them. Thus, Algorithm 2 is as
sound as the original analysis and terminates in as many
iterations.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

Algorithm 3 Graph Reconstruction.

1: procedure WALKBACK(〈df, next_rule_marker, a〉)
2: if stoppingCondition() then
3: pruneInfeasiblePaths(a)
4: return
5: s := getStatement(df)
6: (D′, rule_marker) := mi ∈ OUT[s] | d = df
7: for pred in D′ do
8: a.addEdge(rule_marker, next_rule_marker, df)
9: walkBack(pred, rule_marker, a)

3.2.2 Extracting the Graphs
Once the marker information is computed, we run Algo-
rithm 3 for each warning, to retrieve its rule graph. The al-
gorithm implements a modified depth-first search algorithm
(DFS). It recursively reconstructs the graph from the <END>
node to the different sources, using predecessor information
for the edges, and rule markers for the nodes. The stopping
condition (line 2) holds if a source is reached when invalid
paths are visited (where returns do not match calls), or when
the DFS runs into a loop (causing unnecessarily complex
patterns). In the latter cases, we then clean up the graph,
removing data from the invalid path.
Soundness and termination: With a DFS, the algorithm
steps back into all possible traces tracked by the marker
information, including invalid ones. However, as long as
the analysis’ merge operator keeps the correct predecessors
in the marker information, the DFS finds all correct traces,
along with potential false positives. Since the number of
generated data-flow facts is finite and the stopping con-
dition keeps track of loops, the algorithm must terminate.
Retrieving all paths between two nodes with a DFS has a
complexity of O(se) with s the number of nodes and e the
number of edges, so we apply optimizations to reduce the
number of explored paths, which we detail in Section 5.1.

3.3 Requirements
We now summarize the requirements for implementing rule
graphs in an existing data-flow analysis:
• The base analysis must terminate.
• The analysis solver must be modified as shown in

Algorithm 2 to piggyback marker information on top
of the data-flow facts.

• The analysis must run the graph extraction pass for
each warning, as shown in Algorithm 3.

• The flow-functions must be annotated with the markers
chosen by the developers, as shown in Figure 2, with
Algorithm 1 as an example for a taint analysis.

Note that the instrumentation time for collecting rule
marker information and extracting rule graphs is negligible
next to the analysis itself: loading all classes, running the
analysis, and reconstructing the warning path are known
bottlenecks of the analysis process. Implementing the rule
graphs does not add more time complexity: it does not
modify the existing algorithms. It just piggybacks data on
top of the base data-flow facts when running the analysis
(collecting rule marker information on top of the fixed
point algorithm) and extracting a witness for the warning
(extracting the rule graph on top of the DFS).

4 USING RULE GRAPHS

In this section, we discuss how to use rule graphs to address
the tasks presented in Section 2.

4.1 Understand a Warning
Traditional static analysis tools provide their users with
warnings traces, i.e., a path from the source(s) to the
sink(s) [2], [17], [18]. While useful to track where the sen-
sitive data flows, such traces do not provide information
on the analysis’ reasoning. For example in Figure 1, at
line 3, if the developer does not know about array over-
approximations, it would be difficult for them to understand
why s is tainted.

The rule information contained in the rule graphs can
be used to enhance the explainability of warning traces. In
the example, the ARRAY rule is contained in the warnings’
rule graph, and can thus be used to help the developer to
understand how the analysis handles arrays. Rule graphs
thus enable the analysis tool to thus provide a more detailed
analysis trace from the source to the sink that explains the
analysis’ reasoning step by step. Each edge e represents a
step of the trace from the point of view of the analysis, and
gives access to the following step information:
• The data-flow fact of interest: in e’s label.
• Why it is of interest to the analysis: e’s origin node.
• The location of the step in the code: in e’s label.
• The next step: the edges departing from e’s destination

node.
• The previous step: the edges arriving at e’s origin node.

Looking up the first three points has a complexity of O(1).
The lookup of the last two points has a worst-case complex-
ity of O(n), with n the number of edges in the graph.

For the example in Figure 1, the enhanced information
about the open redirect can be read from the middle graph
and reported to the developer as follows:
• l.2: SOURCE statement: uID is tainted.
• l.3: Assignment to an ARRAY: s is tainted from uID.
• l.10: Assignment to a LOCAL: url is tainted from s.
• l.11: SINK statement: url is reported.
Unlike traditional traces, this gives developers insight

into the inner-workings of the analysis and allows them to
pinpoint points of uncertainty, such as the ARRAY rule in
the example above: looking at the code, we see that s should
not be tainted from uID, which the analysis does. Note that
the traces in Figure 1, the graphs approximate traditional
traces, but more targeted sets of markers can be used, for
example reporting only on the SOURCE, SINK, and ARRAY
markers if LOCAL is of no interest.

4.2 Identify Weak Analysis Patterns
In the previous section, we have shown how to use rule
markers to expose the analysis’ internal rules to the devel-
oper, allowing them to pinpoint their shortcomings. We can
take that a step further and semi-automate the detection of
rule patterns that can lead to wrong results, for example, the
array over-approximation in Figure 1.

Given a training set of labeled true and false positives,
the corresponding rule graphs can be used to learn the most
likely causes for the false positives and thus detect weak

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

1 try {
2 setImeiAsSourceAndCreateRuntimeException();
3 sms.sendTextMessage(num, null, imei, null,

null);
4 } catch (RuntimeException ex) { ... }

Listing 1: No Data Leak: the Program Jumps into the Catch
before Reaching the Sink

analysis patterns. Those weak patterns are combinations
of analysis rules that lead to false positives. In terms of
rule graphs, this translates to the presence or absence of
subsets of edges (or nodes) in the rule graph indicating
its likelihood of being a false positive. In the example, the
first SQL injection and the open redirect are false positives,
while the second SQL injection is a true positive. Comparing
the graphs of the false positives (the first two graphs in
Figure 1) and the graph of the true positive (rightmost graph
in Figure 1), we see that the ARRAY rule is the problematic
one.

Weak patterns are retrieved from a machine-learning
classifier, initialized with a training set labeled with the
classes false positive and true positive. The features used to
characterize a rule graphs are the presence or absence of its
nodes or unlabeled edges (combination of two nodes), in the
form of a boolean vector. Once the classifier learns which
combinations of features are more likely to lead to false
positives, we use its decision rules to reveal the analysis’
weak patterns. This method requires the classifier to be a
rule-based classifier, such as a decision tree.

Following the example of Figure 1, a rule-based classifier
would learn that rule graphs containing the node ARRAY
are more likely to be false positives than others without.
We can report that rule to the user, bringing their attention
to the weak ARRAY rule, and showing that the way arrays
are handled in the flow function is not entirely correct. In
the case where the classifier would use the rule graphs’
unlabeled edges rather than the nodes, it would report
any of the following edges as potential indicators for false
positives: SOURCE → ARRAY, ARRAY → LOCAL, also
indicating the ARRAY rule as problematic.

4.3 Identify Missing Analysis Patterns
As mentioned in Section 2, another cause for false positives
in an analysis is missing analysis rules. For example, let
us consider Listing 1. In this code snippet, let us assume
that the analysis does not handle try/catch constructs. It
would report a data leak from the source line 2 to the
sink line 3. This is a false positive, since the sink is never
reached. The analysis is missing a rule about handling
try/catch constructs. Missing rules are difficult to identify
automatically, since there are no rules to point towards in
the first place. In that case, it is more efficient to show the
developer inconsistencies in the treatment of two warnings,
so that they can manually determine whether or not the
analysis behaves as expected.

Rule graphs can be used to pick good candidates to show
the developer. If two rule graphs are similar (showing that
the analysis handles the corresponding warnings similarly),
but one is a false positive and one is a true positive, the

analysis could be missing rules to properly handle the false
positive, and the difference between the two warnings may
indicate what that missing rule could be. For example, let us
assume that in Figure 1 line 7 refers to s[0] instead of s[1],
making the first SQL injection a true positive. Ignoring the
edge labels, the two first rule graphs (first SQL injection
and open redirect) are identical, yet one is a true positive
and one, a false positive. This can indicate a missing rule:
here, for managing individual array elements. Reporting the
warning pair to the developer can thus help them identify
the missing rule.

To calculate the similarity between two warnings, we de-
fine the following similarity coefficient based on the number
of edges their rule graphs have in common. The greater the
coefficient, the more similar the warnings.

similarity(G1,G2) =
1

2
·
(
#(eG1 ∩ eG2)
#eG1 +#eG2

+
#(elG1 ∩ elG2)
#elG1 +#elG2

)
with Gi the warning graph, eG the set of unique edges in
G ignoring the edge labels, and elG the set of unique edges
in G taking the edge labels into account. The first part of
the equation encodes the analysis’ treatment of the warning
regardless of the particular lines of code (edge labels). The
second part is used when two warnings are semantically
similar: the coefficient differentiates them by code location,
using the edge labels. The 1/2 normalizes the coefficient to
a maximum value of 1.

Applied to Figure 1, we see that the warnings that are
most similar are the SQL injection line 8 and the open
redirect, with a similarity coefficient of 0.75 (all eight edges
in common, four labeled edges in common), compared to
0.14 for the other two relationships (two of seven edges in
common, no labeled edges in common).

5 IMPLEMENTATION

We now detail the implementation of the rule graphs and
of the three modules that use them. For warning under-
standability, we present MUDARRI, an IntelliJ plugin that
displays warning traces augmented with marker informa-
tion. For the identification of weak analysis patterns, we
show a machine-learning based pattern detection module.
A last module for similarity computations is used for the
identification of missing analysis rules. The source code is
available online [19].

5.1 Rule Graphs
We have implemented the rule graphs on top of a taint
analysis for Java and Android applications in the Soot-
based [20], [21] IFDS [22] solver HEROS [23]. To com-
pute the rule marker information (Section 3.2.1), we use
a modified version of the path-reconstruction approach
from FlowTwist [24]: we encapsulate the data-flow facts
with additional information containing the original source
statement of the current data-flow fact, the data-flow fact’s
predecessors and their corresponding rule markers, and the
data-flow fact’s neighbors, used for trace reconstruction. We
also adapt the analysis solver to propagate data-flow facts
along neighbors.

Our analysis’ flow functions span 650 LOC, which con-
tain a total of 39 rule markers. Thirteen markers are attached

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

A

B

C

D

Figure 3: GUI of MUDARRI.

to analysis rules specific to calls to various library APIs,
eight mark rules about taint transfers at call and return
sites, six mark rules that describe the different types of taint
transfer at assignment statements (e.g., LOCAL, ARRAY,
etc.), three mark rules for sources and sinks, eight cover
rules for manipulating aliases, and one is a marker used for
a custom rule in the trace lookup algorithm.

For scalability, we limit the graph extraction (Sec-
tion 3.2.2) to one trace per warning. We also reduce the
number of visited paths by checking for loops and invalid
paths (i.e., paths with non-matching call stacks), and by
using FlowTwist’s neighbor system. The sets of nodes and
edges are stored in hashsets, allowing for a constant lookup
complexity. The rule markers consist in a simple description
string, and the edge labels contain the fully qualified name
of the analyzed statement (i.e. including the statement, its
line number, and its class name), to avoid confusions across
multiple files.

5.2 Rule Graphs in Practice
The main overhead for using rule graphs is to define which
rules to set in the flow functions (as shown in Algorithm 1),
and to assign a human-understandable explanation to show
the developer at runtime (as illustrated in Section 4.1).
Depending on the use case and the codebase, different sets
of markers can be used to pinpoint specific usages of certain
analysis rules and surface them to the developer. In practice,
this setup can be done once, when the tool is configured
initially.

To provide more or less granularity in the warning
explanations, it is not necessary to generate exactly one
level of markers per call to the flow function, as shown
in Section 3.2.1. When rules are not of interest, there is
no need to mark them. When more detailed explanations
are required, it is possible to generate a chain of data-
flow facts in the same flow function. For example, if a
variable is tainted at a source and that variable is already
aliased to another variable, a chain of two data-flow facts

can be produced at once: SOURCE and ALIAS. In our taint
analysis, the longest chain in our analysis is of length 4.

The granularity of the markers is an important factor. In
case where the user wishes to have as much data as possible,
they can mark every line of the flow functions, providing
simple explanations for each individual marker. This would
result in multiple markers being assigned sequentially to the
same line of code. The graph would then contain a sequence
of multiple simple explanations for a single line of code,
making the global explanation easier to understand, but also
more verbose. In the case of proprietary information or code
parts where the analysis cannot give details (e.g., native
code, closed-source libraries, etc.), the user can annotate
this case with a specific marker (e.g., NATIVE_CODE) and
assign a description of how the analysis is supposed to
behave there.

5.3 Graphical User Interface

The taint analysis can run as a standalone command-line
tool, but we have also integrated it in an IntelliJ plugin [25]
named MUDARRI. Figure 3 illustrates MUDARRI’s Graphical
User Interface (GUI). The example code contains an SQL
injection highlighted in the editor (A) and in the right
gutter (B). The bottom view (C) details the warnings
found in the application and each step of the warnings.
For each step of a warning, the plugin displays the line
of code, the tainted variable(s), and an explanation on the
corresponding rule marker. For example, the first line in
the view shows that the variable query is tainted because
of the source method getParameter, and the second line
explains that the taint is transferred from query to param
because the tainted query is assigned to param. Selecting
a warning in the bottom view highlights the corresponding
lines of code in the editor and marks the tainted variables
in a bold red font. Those details also appear in a tooltip
(D) when hovering over a highlighted line of code. The full

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

warning can be seen in (C). Double-clicking on a step in the
bottom view opens the corresponding file in the editor.

MUDARRI thus aims at improving the explainability of
the analysis warnings by explaining how they are detected
in the code, and by visualizing them in the interface.

5.4 Offline Functionalities

From a set of warnings marked as true or false positives,
the pattern detection module pre-processes the warnings’
rule graphs and extracts their nodes. It then passes them
to a rule-based machine-learning classifier, and retrieves
its rules, as shown in Section 4.2. The machine learning
module is implemented using the WEKA machine learning
framework [26]. Both graph nodes and edges can be used
as learning features, and their presence or absence in a
particular rule graph provides binary inputs to help classify
the graph. Since the pattern detection module depends on
machine learning, it runs into the scalability issues known
to that domain [27]. As a result, a full learning/classification
cycle cannot be used at runtime in the developer’s Inte-
grated Development Environment (IDE). Instead, we run
them offline, as part of post-processing modules after the
analysis terminates.

Finally, the similarity computations module pairs warn-
ings that have opposite labels (i.e., a false positive and
a true positive), and yields a list of similar warnings to
explore, allowing the user to identify missing analysis rules,
as described in Section 4.3. Pairs are returned in decreasing
similarity order, so that the pairs that have the highest
chances of indicating missing analysis rules are shown first.

6 EVALUATION

To evaluate the use of rule graphs for the three tasks de-
scribed in Section 4, we ask the following research questions:

RQ1: Can rule graphs help understand warnings?
RQ2: Can rule graphs help find weak patterns?
RQ3: Can rule graphs help find missing patterns?
We ran our experiments on a 64-bit 10.13 Mac OS X

laptop with an Intel Core i5 2,9 GHz CPU running Java 1.8,
with a Java heap space of 8 GB.

6.1 User Study (RQ1)

Through a user study, we evaluate how internal analysis in-
formation assists the developer in understanding warnings.
We compare MUDARRI to TRACE, a version of MUDARRI
that does not contain marker information (illustrated in
Figure 4). The two tools are visually identical, except for
the details of the trace in the bottom view (C in Figure 3):
TRACE does contains the tainted variables and the lines of
code, but the rule marker information is replaced by the Java
statement at that line of code, showing a traditional trace.

6.1.1 Experimental Setup
We ran a comparative, within-subjects user study between
MUDARRI and TRACE with 22 participants, referred to as
P1–P22 (13 students, 9 researchers). Computer science stu-
dents are considered reasonable proxies for developers in
software engineering studies [28]–[31]. Of all participants,

Figure 4: GUI of TRACE, for the same code example as
for Figure 3. Similarly to many current analysis tools the
explanations are not generated from the markers, but are
code snippets.

13.6% have between one and two years of experience as
professional software developers, 9.1% of the have more
than five years of experience, 22.7% have between three and
five years of experience, 13.6% have between two and three
years of experience, and 40.9%, a year or under. We refer to
"years of experience" professional, remunerated experience.

The participants were given a 15-minutes task: to go
through a list of data leaks reported by the taint analysis,
decide if they are true positives or false positives, and
explain their reasoning. We did not measure the correctness
of their choice, but whether or not they understood the
warning, i.e., if they could name the correct source and
sink, which variables were tainted between them, and how
the taints were transferred at each statement. This is the
typical reasoning of a developer when dealing with taint
analysis warnings. We consider this the least subjective way
of evaluating if a participant understood a warning.

The participants performed the task twice: once with
MUDARRI, and once with TRACE. A latin-square design was
used to counter the learning effects: half of the participants
used MUDARRI first, the other half used TRACE first. The
tools were named "Tool 1" and "Tool 2", in the order in which
the participants were introduced to them. For the two tasks,
we used two real-world Android applications from F-Droid:
Balance [32] and Sparkleshare [33] containing respectively 8
and 16 data leaks over their respective 1,000 and 1,700 LOC.
All participants performed the first task with Balance and
the second with Sparkleshare.

During the tasks, we asked the participants to think
aloud, allowing us to determine which warnings they un-
derstood correctly. We also obtained information about the
features of MUDARRI and TRACE that were perceived as
most or least useful. After each task, the participants also
graded the the tool they used on a Likert scale from 0 to 10,
for a Net Promoter Score (NPS) [34].

6.1.2 Results

Figure 5 presents the percentage of participants who could
correctly explain each warning. For the first task, we see that
with MUDARRI, participants understood Balance’s warnings

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

1 2 3 4 5 6 7 8
0%

20%
40%
60%
80%
100%

warnings

%
pa

rt
ic

ip
an

ts

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0%
20%
40%
60%
80%

100%

warnings

%
pa

rt
ic

ip
an

ts

Figure 5: Percentage of Participants Who Correctly Under-
stood the 8 Warnings of Balance (top) and the 16 Warnings
of Sparkleshare (bottom) with MUDARRI (black) and TRACE
(white).

better than with TRACE: on average, 86.67% of the partici-
pants understood the warnings correctly using MUDARRI,
but only 14.81% using TRACE. This is mostly due to MU-
DARRI’s clarification of the source and sink methods (P12
“[With TRACE] I don’t know if it is a true sink”) and the taint
transfers in cases of complex code constructs. For example,
the first warning in Balance had an Intent constructor as
a source, which was not explicitly stated in TRACE. Since
the constructor does not look like a typical source method,
most participants overlooked it and misidentified the source
for another method. MUDARRI explicitly names the source
method, allowing participants to easily identify it. In an-
other example, a wrong analysis rule mistakenly transferred
a taint in a listener object. Most MUDARRI users immedi-
ately identified the problem, because MUDARRI reported a
taint transfer due to an assignment on a line with no assign-
ment. TRACE users spent more time speculating on how the
taint entered the listener. We thus see that rule graphs allows
the tool to show the developer an easily understandable
message that explains how the analysis reasons. With this
message, they can then determine whether the reasoning is
sound or not, for each statement of the code, step by step.

For the second task, the warnings of Sparkleshare were
of two kinds: warnings 1 to 7 were similar to a few warnings
already seen in Balance, and warnings 8 to 16 were new
types of warnings. We see that TRACE users perform much
better on warnings they are familiar with (74.60%) than not
(26.67%), while MUDARRI users perform equally well over
both groups (respectively 82.81% and 82.61%). With new
warnings, we again see the general trend of MUDARRI help-
ing participants understand warnings better than TRACE.
For warnings 1 to 7, the similar performance of both par-
ticipant groups illustrates a learning effect: TRACE users
had used MUDARRI for their first task, and the knowledge
gained then allowed them to perform almost as well as
MUDARRI users for warnings that they had already seen

Table 1: List of False Positives Reported by the Taint Anal-
ysis in DroidBench, and their Root Causes. FP1–FP5 are
caused by weak analysis rules, FP6–FP14, by missing analy-
sis rules.

ID Test case Cause

FP1 ArrayAccess2 Array over-approximation
FP2 ArrayAccess5 Array over-approximation
FP3 IntentSink2 Wrong Android lifecycle model
FP4 IntentSink2 Wrong Android lifecycle model
FP5 Merge1 Incomplete handling of aliases

FP6 Button2 Type of callback not handled
FP7 Exceptions3 Type of exception not handled
FP8 Exceptions7 Type of exception not handled
FP9 HashMapAccess1 Collection over-approximation
FP10 SimpleUnreachable1 No check for unreachable code
FP11 UnreachableBoth No check for unreachable code
FP12 UnreachableSource1 No check for unreachable code
FP13 UnreachableSink1 No check for unreachable code
FP14 Unregister1 Callback behaviour not handled

before (P8 “If I didn’t [already] know what it was, I could not
find out what it is about”). With new types of warnings,
their performance decreased, showing that they were not
given the necessary knowledge to understand and assess
them. Over both tasks, a two-tailed Wilcoxon Rank-Sum test
shows that the participants understand significantly more
warnings with MUDARRI (p = 0.00008 < 0.05).

Mudarri’s NPS [34] is of 13.6, denoting a positive score.
In comparison, TRACE received a negative score of -50. Par-
ticipants noted the highlighting and navigation capabilities
of both tools as very useful. Since participants were not
told when they interpreted the warnings incorrectly, their
impression of the two tools depended entirely on the GUI.
Based on the grades, 16 of the 22 participants preferred MU-
DARRI, which we attribute to the analysis details provided
by the tool (P6 “I can recognize the problem quickly”, P15 “It
helps me know why the tool thinks that”). Despite their bet-
ter performance when using MUDARRI, three participants
preferred TRACE. We attribute this discrepancy to the large
amount of text in MUDARRI, which can be time-consuming
to read, especially when the participant already knows how
the warning works (P13 “There is too much information [...] it
breaks my workflow.”).

RQ1: Analysis-based information helps developers un-
derstand warnings significantly better than traditional
traces for warnings that they have not seen before. It
also helps build up a reusable knowledge of the tool and
warning types.

6.2 Empirical Evaluation, Weak Patterns (RQ2)
We evaluate the weak pattern detection module, using anal-
ysis warnings generated with the taint analysis from RQ1
on DroidBench [2].

6.2.1 Experimental Setup
DroidBench [2] is an open-source benchmark for taint anal-
ysis in Android applications, annotated with the exact list
of data leaks it contains. At the time of our study, Droid-
Bench contains 187 Android applications on which our taint
analysis finds 202 warnings, 14 of which are false positives,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

J48:

TAINT_ALIAS true

RETURN_PARAMS true: true positive (2)

RETURN_PARAMS false: false positive (3)

TAINT_ALIAS false

API_TO_STRING true: true positive (14)

API_TO_STRING false

ARRAY_WRITE true: true positive (3)

ARRAY_WRITE false

API_BASE_LOCAL true

FIELD_ASSIGN true: true positive (8)

FIELD_ASSIGN false

RETURN_THIS true: false positive (2)

RETURN_THIS false: true positive (8)

API_BASE_LOCAL false: true positive (162)

JRip:

(1) ID ∧ TAINT_ALIAS ∧ ¬RETURN_PARAMS
=⇒ false positive (2)

(2) ID ∧ ¬LOCAL ∧ RETURN_THIS =⇒ false positive (2)
(3) =⇒ true positive (198)

DecisionTable:

(1) =⇒ false positive (202)

Figure 6: Decision Tree of J48 and Rules of JRip and De-
cisionTable on DroidBench, and the Number of Warnings
Matching Each Rule.

detailed in Table 1. We refer to them as FP1–FP14. We focus
on FP1–FP5, the ones caused by weak analysis rules.

To answer RQ2, we examine the rules yielded by four
different rule-based classifiers of WEKA: J48, DecisionTable,
RandomForest, and JRip, and verify whether or not the rea-
sons for FP1–FP5 appear in those rules. Using the warnings
generated on DroidBench, we use the nodes of the rule
graphs as features: the usage of unlabeled edges as features
yields a lower precision than with nodes (on average on
a 10 cross-fold validation , 0.875 with the nodes and 0.866
with the edges) and recall (on average on a 10 cross-fold
validation , 0.922 with the nodes and 0.919 with the edges)
and more complex rules. We thus report on the pattern
detection module using the nodes as features.

6.2.2 Results
Figure 6 presents the decision tree created by J48, along
with the rules generated by JRip and DecisionTable. We do
not represent the 100 trees generated by RandomForest, for
space reasons.

Let us focus on J48. We note two main false positive
patterns: first, when an alias is tainted, the corresponding
warning is likely to be a false positive if the taint does not
return to a caller through its parameter. This corresponds
to FP5. Second, the conjunction of API_BASE_LOCAL (API
calls tainting the base object if one of the parameters is
tainted), and RETURN_THIS (tainting the base object of a
caller if the this variable is tainted in the callee) is also a
false positive pattern. This corresponds to FP3 and FP4 and

happens because of the incomplete modeling of the Android
lifecycle, which causes an entire Activity to be tainted if
one of its static attributes are. For true positive patterns,
we also see that warnings using the rule ARRAY_WRITE
(corresponding to FP1 and FP2) are considered true posi-
tives. This is due to DroidBench’s five array test cases, three
of which are true positives. Using true positive patterns
in conjunction with false positive warnings matching those
patterns allows us to locate the analysis’ weaknesses. From
the classifiers’ rules and classification results, we can see
which analysis patterns match the DroidBench false posi-
tives that are due to weak analysis rules: use of arrays, and
mishandling aliases and Android Intents, which can then be
used to fix the weak analysis rules.

JRip contains fewer rules than J48 (Figure 6): just three.
The first one means that the combination of the rules ID
and TAINT_ALIAS, along with the absence of the rule
RETURN_PARAMS is likely to indicate a false positive, and
that two entries of the training set match this rule. Similarly,
two entries match the second rule, and the 198 other entries
match the default rule: true positive. We see that JRip’s
rules confirm the main rules from Figure 6: the combination
of TAINT_ALIAS and ¬RETURN_PARAMETERS and the
RETURN_THIS denoting false positives, while the rest is
classified as true positives. We attribute the better perfor-
mance of J48 to the more efficient pruning of JRip, which
is implemented as part of RIPPER [35], an improvement
of the REP method used by J48. Combined with the low
number of false positives in the training set, JRip’s more
efficient pruning policy yields simpler rules. This effect
is also observed with DecisionTable’s unique rule, which
classifies all warnings as true positives: since DecisionTable
is a majority classifier, the false positives are considered as
noise, and the resulting rule selects the majority class: true
positives. RandomForest goes in the opposite direction—
generating 100 trees of a larger size (from 29 leaf nodes to 69)
most of which also contain the three rules discussed above,
which we attribute to RandomForest’s known overfitting
behavior in the case of noisy datasets [36].

RQ2: Classifier rules obtained from rule graphs can help
determine weak analysis rules. In the case of Droid-
Bench’s weak analysis patterns, J48 provides the best
tradeoff between pattern size and precision. Integrating
a weak rule detection module in an analysis tool can
help software developers determine which analysis rules
should be adjusted when configuring or using the tool.

6.3 Empirical Evaluation, Missing Patterns (RQ3)
To evaluate the missing pattern suggestion module, we use
the same benchmark as for RQ2, DroidBench, with the same
taint analysis as for RQ1 and RQ2. This time, we focus on
FP6–FP14 (detailed in Table 1), the false positives caused by
missing analysis rules.

6.3.1 Experimental Setup
To assist developers in the detection of missing analysis
rules, we generate pairs of similar true / false positives from
the DroidBench training set, using the similarity coefficient.
As mentioned in Section 4.3, the difference between a pair

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

0 500 1,000 1,500 2,000 2,500
0

0.2

0.4

0.6

0.8

warning pairs

si
m

ila
ri

ty

Figure 7: Distribution of the Similarity Coefficient Between
Each Pair of Warnings.

of true / false positives which share a high similarity can
be indicative of missing rules. So, we point the developer
towards the pairs with the highest similarity coefficient.

6.3.2 Results

We obtain a total of 2,590 pairs, with similarity coefficients
ranging from 0 to 0.691 (avg = 0.085, σ = 0.115). Figure 7
shows the similarity coefficient for each of the pairs in the
list. Only two pairs of warnings have a coefficient higher
than 0.5, 956 are at 0.1 or more, and 1,222 have a similarity
coefficient of 0.

The top two pairs (with coefficients of 0.691 and 0.669)
report on FP6. In this test case, the true positives share
a large part of their traces with the false positive. The
difference between the traces mainly consists in calls to the
dummyMain method, which we use to model the Android
lifecycle [2]. This observation reveals the missing analysis
support for the particular type of callback found in the false
positive. Two pairs concerning exception handling (FP7 and
FP8) with coefficients of 0.5 and 0.421, also provide ideal
comparisons: the source code, illustrated in Listing 2 (true
positive) and Listing 3 (false positive), is almost identical
but for the exception types. This similarity leads to almost
identical rule graphs (with unlabeled edges), and allows the
user to easily identify the missing rule: the analysis does not
distinguish between different types of exceptions.

However, other pairs provide less explicit explanations.
FP10 and FP12 are involved in 64 pairs, all with a similarity
coefficient of 0.5. All of those warnings have a simple
SOURCE → SINK graph. As a result, it is not easy to infer
which rule is problematic since the true positives are so
different from the false positives. Other pairs share this is-
sue, namely those concerning FP9–FP14. Better pairs would
require the true positive to be semantically close to the false
positive (like in the exception examples), but DroidBench
does not contain such test cases. A possible solution to this
problem would be to add code-specific information in the
similarity coefficient, to differentiate between two identical
traces such as the SOURCE→ SINK edges of FP10 and FP12.

We note that six of the nine false positives are found
in the first 60 pairs, with a similarity coefficient higher than
0.421 or higher. This shows that the coefficient can be used to
indicate potential missing patterns. In practice, the user can
set a threshold of pairs to investigate, which can be tuned at
configuration time.

5 try {
6 setImeiAsSourceAndCreateInvalidCastException();
7 } catch (RuntimeException ex) {
8 sms.sendTextMessage(num, null, imei, null,

null);
9 }

Listing 2: DroidBench Exceptions3 Test Case. True Positive
(InvalidCastException is a RuntimeException).

10 try {
11 setImeiAsSourceAndCreateInvalidCastException();
12 } catch (ArrayIndexOutOfBoundsException ex) {
13 sms.sendTextMessage(num, null, imei, null,

null);
14 }

Listing 3: DroidBench Exceptions7 Test Case. False Positive.

RQ3: Rule graphs can be used to compute warning
similarities and to point the developer towards missing
analysis rules, helping them add missing rules in the
analysis’ ruleset. Code-specific features can also be used
in the similarity computation to increase the precision of
the approach.

7 LIMITATIONS AND FUTURE WORK

We ran the user study in a controlled environment in which
participants only had 20 minutes to work on small-scale
applications. Because getting used to a larger code base or to
too many analysis results would have taken longer than the
15-minutes dedicated to each task, we chose to limit the size
of the applications. The two applications are still real-world
applications from F-Droid. While running the experiments
in a controlled environment allowed us to remove external
threats to validity, it would be interesting to also evaluate
MUDARRI in a real-life environment.

The user study was a within-subjects study, so we ob-
served a learning effect in which participants performed
better on the second task. We addressed this issue with a
latin-square design, in which half of the participants used
MUDARRI first, and the other half, TRACE first, and reported
on the aggregated results of both halves.

It is subjective to decide whether the developer under-
stood a warning or not, because it depends on the rater’s
interpretation of "understanding". To limit the subjectivity
of the rater’s judgement, we considered that the participant
correctly understood a warning if they could name the cor-
rect source and sink, which variables were tainted along the
way, and how the taint transfers were made for each step.
This is the reasoning a developer would need to build when
dealing with taint analysis warnings. Subjective factors such
as whether the leaked information contains sensitive data,
or whether the warning has a high impact or not were thus
kept out of the decision.

As seen in Section 6.2, the use of analysis rules for
pattern extraction is not enough to completely distinguish
all warning classes. External code and warning-specific
features could improve the classification. We leave this for
future work.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

Participants have reported that the explanations pro-
vided by MUDARRI can be time-consuming to read, es-
pecially when the participant already knows about the
warning. Learning which level of detail to display to which
developer in which circumstances is an interesting research
topic that we leave for future work.

The quality of the rule patterns found in Section 6.2
heavily depend on the quality of the training set. Like
all machine learning approaches, a bad training set intro-
duces uncertainties and yields inaccurate results. In our
evaluation, we used DroidBench, a benchmark of minimal
examples for taint analysis with both true and false positives
as our training set. While not complete, this benchmark
covers the most common use cases for Android. To apply
our approach to other types of applications or languages, it
will be important to define a good training set first.

A drawback of the pattern-detection module using ma-
chine learning is its scalability, which we mitigate by run-
ning it offline. It would be possible to apply the learning
incrementally, and then use the module interactively in the
IDE, which we leave for future work. Another alternative
would be to reduce the patterns and graph matching to
simpler heuristics that can be quickly verified, and to rerun
the entire method offline from time to time.

The rule graph approach aims to help developers un-
derstand how the analysis reasons and give them insights
into what could potentially go wrong with the analysis.
For developers to make best use of the rule graphs, it is
important to use a set of markers adapted to the codebase
and to the needs of the users. This requires from the person
doing the set up some knowledge of static analysis and its
weaknesses in the context in which the tool is meant to be
used. However, once the rule graphs are set up, the tool
can be used like any existing static analysis tool, without
the need for domain-specific knowledge. On the contrary,
it surfaces this domain-specific knowledge to the user by
displaying it in the interface.

8 RELATED WORK

In this section, we present past research about improving
warning explainability, and the integration of developer-
specific knowledge in the analysis rules.

8.1 Warning Explainability
Past studies have highlighted warning explainability as one
of the major issues of static analysis tools. Fourteen of the
twenty developers interviewed by Johnson et al. [8] reveal
that poorly presented output is one of the main reasons
for tool underuse. With a study on Microsoft developers,
Christakis et al. [10] show that the second most popular
pain point of static analyzers is the bad warning messages,
the lack of fix suggestions coming fifth on the list of 15 pain
points. In a study at Google, Lewis et al. [9] cite “obvious
reasoning” as a desirable feature of an analysis tool, where
they advocate for the analysis tool to provide clear proof of
why a warning is reported. In a study of Fortify SCA [18],
Ayewah et al. [11] find that badly explained traces harm the
understanding of the bug and the confidence of the devel-
oper in the tool. Those studies motivate the need for better
developer support in understanding analysis warnings.

Similarly, for warning understanding, current ap-
proaches base themselves on external information. Phang
et al. [37] only focus on the code when visualizing warning
traces. Nanda et al. [38] visualize warnings based on warn-
ing and code information, like modern commercial tools
such as Checkmarx [39] or CodeSonar [17]. With our ap-
proach, we argue that internal analysis-specific information
gives more insight into the warning.

8.2 Usage of Internal Analysis Rules

The idea of integrating analysis-specific knowledge to assist
developers has been mentioned by Jung et al. [40]. They
use a statistical analyzer to help triage false positives from
true positives, based on “symptoms”. In their conclusion,
they advance the idea that using the analysis’ weaknesses
as symptoms would yield better results than external symp-
toms such as coding features for example. Past work on
nano-patterns has proven data-flow and control-flow fea-
tures useful to characterize Java methods [41] and detect
software vulnerabilities [42]–[44], but those features are not
used for warning understanding and analysis configuration.
In our approach, we use internal information to aid devel-
opers understand and fix warnings, and help them identify
weaknesses in the analysis rules.

9 CONCLUSION

In this article, we advocate for more transparency of the
analysis’ inner-workings in order to enhance the under-
standability of static analysis warnings, and help develop-
ers configure the analysis rules by identifying weak and
missing analysis rules. To this end, we have presented the
concept of rule graphs and presented a general recipe for
applying it to how to data-flow analysis frameworks. With
our implementation of the rule graphs and of the modules
illustrating their usages: the MUDARRI IntelliJ plugin, the
pattern detection module, and the similarity computation
module, we have demonstrated how to apply the concept
of rule graphs for taint analysis.

Through a user study with 22 developers and an em-
pirical evaluation on the 187 applications of DroidBench, a
reputable benchmark for static analysis for Android appli-
cations, we show that rule graphs can enhance the reporting
of analysis warnings and assist developers in evaluating
the analysis rules, thus providing them with a better user
experience of static analysis when using and configuring it.

With this research, we encourage other researchers and
practitioners to explore other applications of rule graphs for
a more transparent use of analysis rules in static analysis
tools. A few examples could be for warning classification
based on rule graph similarities, or fix generation using the
comparison of a warning’s rule graph and its fix’s.

ACKNOWLEDGMENTS

This research has been partially funded by the Heinz Nix-
dorf Foundation, by the BMBF within the Software Campus
initiative, the DFG project RUNSECURE, and the NRW
Research Training Group on Human Centered Systems Se-
curity (nerd.nrw).

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

REFERENCES

[1] S. Krüger, J. Späth, K. Ali, E. Bodden, and M. Mezini,
“Crysl: An extensible approach to validating the correct
usage of cryptographic apis,” in 32nd European Conference on
Object-Oriented Programming, ECOOP 2018, July 16-21, 2018,
Amsterdam, The Netherlands, 2018, pp. 10:1–10:27. [Online].
Available: https://doi.org/10.4230/LIPIcs.ECOOP.2018.10

[2] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid:
Precise context, flow, field, object-sensitive and lifecycle-
aware taint analysis for android apps,” SIGPLAN Not.,
vol. 49, no. 6, pp. 259–269, Jun. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2666356.2594299

[3] P. D. Schubert, B. Hermann, and E. Bodden, “Phasar:
An inter-procedural static analysis framework for c/c++,”
in Tools and Algorithms for the Construction and Analysis of
Systems, ser. TACAS. Springer, Cham, 2019. [Online]. Available:
https://doi.org/10.1007/978-3-030-17465-1_22

[4] J. Späth, K. Ali, and E. Bodden, “Ideal: Efficient and precise
alias-aware dataflow analysis,” Proc. ACM Program. Lang., vol. 1,
no. OOPSLA, pp. 99:1–99:27, Oct. 2017. [Online]. Available:
http://doi.acm.org/10.1145/3133923

[5] J. Späth, L. N. Q. Do, K. Ali, and E. Bodden, “Boomerang:
Demand-Driven Flow- and Context-Sensitive Pointer Analysis for
Java,” in 30th European Conference on Object-Oriented Programming
(ECOOP 2016), ser. Leibniz International Proceedings in
Informatics (LIPIcs), S. Krishnamurthi and B. S. Lerner, Eds.,
vol. 56. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2016, pp. 22:1–22:26. [Online]. Available:
http://drops.dagstuhl.de/opus/volltexte/2016/6116

[6] B. G. Ryder, “Incremental data flow analysis,” in Proceedings
of the 10th ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages, ser. POPL ’83. New York, NY,
USA: ACM, 1983, pp. 167–176. [Online]. Available: http:
//doi.acm.org/10.1145/567067.567084

[7] L. Nguyen Quang Do, K. Ali, B. Livshits, E. Bodden,
J. Smith, and E. Murphy-Hill, “Just-in-time static analysis,” in
Proceedings of the 26th ACM SIGSOFT International Symposium
on Software Testing and Analysis, ser. ISSTA 2017. New
York, NY, USA: ACM, 2017, pp. 307–317. [Online]. Available:
http://doi.acm.org/10.1145/3092703.3092705

[8] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why
don’t software developers use static analysis tools to find bugs?”
in Proceedings of the 2013 International Conference on Software Engi-
neering, ser. ICSE ’13. Piscataway, NJ, USA: IEEE Press, 2013, pp.
672–681.

[9] C. Lewis, Z. Lin, C. Sadowski, X. Zhu, R. Ou, and E. J. Whitehead,
“Does bug prediction support human developers? findings from a
google case study,” in 2013 35th International Conference on Software
Engineering (ICSE), May 2013, pp. 372–381.

[10] M. Christakis and C. Bird, “What developers want and need
from program analysis: An empirical study,” in Proceedings of
the 31st IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE 2016. New York, NY, USA: ACM, 2016,
pp. 332–343. [Online]. Available: http://doi.acm.org/10.1145/
2970276.2970347

[11] N. Ayewah and W. Pugh, “A report on a survey and study
of static analysis users,” in Proceedings of the 2008 Workshop
on Defects in Large Software Systems, ser. DEFECTS ’08. New
York, NY, USA: ACM, 2008, pp. 1–5. [Online]. Available:
http://doi.acm.org/10.1145/1390817.1390819

[12] MITRE, “Cwe-89: Improper neutralization of special
elements used in an sql command (’sql injection’),”
https://cwe.mitre.org/data/definitions/89.html, 2019.

[13] ——, “Cwe-601: Url redirection to untrusted site (’open redirect’),”
https://cwe.mitre.org/data/definitions/601.html, 2019.

[14] U. Khedker, A. Sanyal, and B. Karkare, Data Flow Analysis: Theory
and Practice, 1st ed. Boca Raton, FL, USA: CRC Press, Inc., 2009.

[15] R. Mangal, X. Zhang, A. V. Nori, and M. Naik, “A user-guided
approach to program analysis,” in Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering, ser. ESEC/FSE
2015. New York, NY, USA: ACM, 2015, pp. 462–473. [Online].
Available: http://doi.acm.org/10.1145/2786805.2786851

[16] J. R. Ruthruff, J. Penix, J. D. Morgenthaler, S. Elbaum, and
G. Rothermel, “Predicting accurate and actionable static analysis
warnings: An experimental approach,” in Proceedings of the 30th
International Conference on Software Engineering, ser. ICSE ’08.

New York, NY, USA: ACM, 2008, pp. 341–350. [Online]. Available:
http://doi.acm.org/10.1145/1368088.1368135

[17] Grammatech, “Codesonar home page,”
https://www.grammatech.com/products/codesonar, 2019.

[18] F. Software, “Fortify home page,”
https://www.microfocus.com/en-us/products/static-code-
analysis-sast/overview, 2019.

[19] L. Nguyen Quang Do and E. Bodden, “Source code of MUDARRI,”
https://github.com/secure-software-engineering/mudarri, 2019.

[20] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sun-
daresan, “Soot: A java bytecode optimization framework,” in
CASCON First Decade High Impact Papers. IBM Corp., 2010, pp.
214–224.

[21] R. Vallée-Rai, E. Gagnon, L. Hendren, P. Lam, P. Pominville,
and V. Sundaresan, “Optimizing java bytecode using the soot
framework: Is it feasible?” in Compiler Construction, D. A. Watt,
Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 18–
34.

[22] T. Reps, S. Horwitz, and M. Sagiv, “Precise interprocedural
dataflow analysis via graph reachability,” in Proceedings of
the 22Nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, ser. POPL ’95. New York, NY, USA:
ACM, 1995, pp. 49–61. [Online]. Available: http://doi.acm.org/
10.1145/199448.199462

[23] E. Bodden, “Inter-procedural data-flow analysis with ifds/ide
and soot,” in Proceedings of the ACM SIGPLAN International
Workshop on State of the Art in Java Program Analysis, ser. SOAP ’12.
New York, NY, USA: ACM, 2012, pp. 3–8. [Online]. Available:
http://doi.acm.org/10.1145/2259051.2259052

[24] J. Lerch, B. Hermann, E. Bodden, and M. Mezini, “Flowtwist:
Efficient context-sensitive inside-out taint analysis for large
codebases,” in Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ser. FSE 2014.
New York, NY, USA: ACM, 2014, pp. 98–108. [Online]. Available:
http://doi.acm.org/10.1145/2635868.2635878

[25] JetBrains, “Intellij home page,”
https://www.jetbrains.com/idea/, 2019.

[26] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining, Fourth
Edition: Practical Machine Learning Tools and Techniques, 4th ed. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2016.

[27] A. Ulanov, A. Simanovsky, and M. Marwah, “Modeling scalability
of distributed machine learning,” in 2017 IEEE 33rd International
Conference on Data Engineering (ICDE), April 2017, pp. 1249–1254.

[28] P. Berander, “Using students as subjects in requirements prioritiza-
tion,” in Proceedings of the 2004 International Symposium on Empirical
Software Engineering, ser. ISESE ’04. USA: IEEE Computer Society,
2004, p. 167–176.

[29] M. Höst, B. Regnell, and C. Wohlin, “Using students as subjects
– a comparative study of students and professionals in lead-time
impact assessment,” Empirical Software Engineering, vol. 5, no. 3,
pp. 201–214, 2000.

[30] I. Salman, A. T. Misirli, and N. Juristo, “Are students represen-
tatives of professionals in software engineering experiments?” in
Proceedings of the 37th International Conference on Software Engineer-
ing - Volume 1, ser. ICSE ’15. IEEE Press, 2015, p. 666–676.

[31] M. Svahnberg, A. Aurum, and C. Wohlin, “Using students
as subjects - an empirical evaluation,” in Proceedings of the
Second ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement, ser. ESEM ’08. New York, NY,
USA: Association for Computing Machinery, 2008, p. 288–290.
[Online]. Available: https://doi.org/10.1145/1414004.1414055

[32] F-Droid, “Balance,” https://f-droid.org/en/packages/
de.mangelow.balance/, 2019.

[33] ——, “Sparkleshare,” https://f-droid.org/en/packages/
org.sparkleshare.android/, 2019.

[34] F. F. Reichheld, “The one number you need to grow,” Harvard
Business Review, vol. 81, no. 12, pp. 46–55, 2003.

[35] W. W. Cohen, “Fast effective rule induction,” in Machine Learning
Proceedings 1995. Elsevier, 1995, pp. 115–123.

[36] M. R. Segal, “Machine learning benchmarks and random forest
regression,” UCSF: Center for Bioinformatics and Molecular Biostatis-
tics, 2004.

[37] Y. Phang, J. S. Foster, M. Hicks, and V. Sazawal, “Triaging check-
lists: a substitute for a phd in static analysis,” in Evaluation
and Usability of Programming Languages and Tools (PLATEAU), ser.
PLATEAU’05, 2009.

https://doi.org/10.4230/LIPIcs.ECOOP.2018.10
http://doi.acm.org/10.1145/2666356.2594299
https://doi.org/10.1007/978-3-030-17465-1_22
http://doi.acm.org/10.1145/3133923
http://drops.dagstuhl.de/opus/volltexte/2016/6116
http://doi.acm.org/10.1145/567067.567084
http://doi.acm.org/10.1145/567067.567084
http://doi.acm.org/10.1145/3092703.3092705
http://doi.acm.org/10.1145/2970276.2970347
http://doi.acm.org/10.1145/2970276.2970347
http://doi.acm.org/10.1145/1390817.1390819
http://doi.acm.org/10.1145/2786805.2786851
http://doi.acm.org/10.1145/1368088.1368135
http://doi.acm.org/10.1145/199448.199462
http://doi.acm.org/10.1145/199448.199462
http://doi.acm.org/10.1145/2259051.2259052
http://doi.acm.org/10.1145/2635868.2635878
https://doi.org/10.1145/1414004.1414055
https://f-droid.org/en/packages/de.mangelow.balance/
https://f-droid.org/en/packages/de.mangelow.balance/
https://f-droid.org/en/packages/org.sparkleshare.android/
https://f-droid.org/en/packages/org.sparkleshare.android/

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

[38] M. G. Nanda, M. Gupta, S. Sinha, S. Chandra, D. Schmidt, and
P. Balachandran, “Making defect-finding tools work for you,”
in Proceedings of the 32Nd ACM/IEEE International Conference
on Software Engineering - Volume 2, ser. ICSE ’10. New
York, NY, USA: ACM, 2010, pp. 99–108. [Online]. Available:
http://doi.acm.org/10.1145/1810295.1810310

[39] Chechmarx, “Chechmarx home page,”
https://www.checkmarx.com/, 2019.

[40] Y. Jung, J. Kim, J. Shin, and K. Yi, “Taming false alarms from
a domain-unaware c analyzer by a bayesian statistical post
analysis,” in Proceedings of the 12th International Conference on Static
Analysis, ser. SAS’05. Berlin, Heidelberg: Springer-Verlag, 2005,
pp. 203–217. [Online]. Available: http://dx.doi.org/10.1007/
11547662_15

[41] J. Singer, G. Brown, M. Luján, A. Pocock, and P. Yiapanis,
“Fundamental nano-patterns to characterize and classify java
methods,” Electron. Notes Theor. Comput. Sci., vol. 253, no. 7,
pp. 191–204, Sep. 2010. [Online]. Available: http://dx.doi.org/
10.1016/j.entcs.2010.08.042

[42] K. Z. Sultana, A. Deo, and B. J. Williams, “Correlation analysis
among java nano-patterns and software vulnerabilities,” in 2017
IEEE 18th International Symposium on High Assurance Systems Engi-
neering (HASE), Jan 2017, pp. 69–76.

[43] G. Destefanis, R. Tonelli, E. Tempero, G. Concas, and M. Marchesi,
“Micro pattern fault-proneness,” in 2012 38th Euromicro Conference
on Software Engineering and Advanced Applications, Sep. 2012, pp.
302–306.

[44] I. Chowdhury and M. Zulkernine, “Can complexity, coupling, and
cohesion metrics be used as early indicators of vulnerabilities?”
in Proceedings of the 2010 ACM Symposium on Applied Computing,
ser. SAC ’10. New York, NY, USA: ACM, 2010, pp. 1963–1969.
[Online]. Available: http://doi.acm.org/10.1145/1774088.1774504

Lisa Nguyen Quang Do is a software engi-
neer at Google. She has received her Ph.D. in
Computer Science from Paderborn University in
2019. Her research focuses on improving the
usability of analysis tools for code developers
and analysis developers through different as-
pects that range from the optimization of the
analysis algorithm to the implementation of its
framework to the usability of its interface.

Eric Bodden is a full professor for Secure Soft-
ware Engineering at the Heinz Nixdorf Institute
of Paderborn University, Germany. He is fur-
ther the director for Software Engineering at the
Fraunhofer Institute for Engineering Mechatronic
Systems. Prof. Bodden has been recognized
several times for his research on program anal-
ysis and software security, most notably with the
German IT-Security Price and the Heinz Maier-
Leibnitz Price of the German Research Founda-
tion, as well as with several distinguished paper

and distinguished reviewer awards.

http://doi.acm.org/10.1145/1810295.1810310
http://dx.doi.org/10.1007/11547662_15
http://dx.doi.org/10.1007/11547662_15
http://dx.doi.org/10.1016/j.entcs.2010.08.042
http://dx.doi.org/10.1016/j.entcs.2010.08.042
http://doi.acm.org/10.1145/1774088.1774504

	Introduction
	Motivating Example
	Background on Data-Flow Analysis
	Understand a Warning
	Identify Weak and Missing Analysis Patterns

	rule graphs
	Running Example and Definition
	Generating Rule Graphs
	Collecting Rule Marker Information
	Extracting the Graphs

	Requirements

	Using Rule Graphs
	Understand a Warning
	Identify Weak Analysis Patterns
	Identify Missing Analysis Patterns

	Implementation
	Rule Graphs
	Rule Graphs in Practice
	Graphical User Interface
	Offline Functionalities

	Evaluation
	User Study (RQ1)
	Experimental Setup
	Results

	Empirical Evaluation, Weak Patterns (RQ2)
	Experimental Setup
	Results

	Empirical Evaluation, Missing Patterns (RQ3)
	Experimental Setup
	Results

	Limitations and Future Work
	Related Work
	Warning Explainability
	Usage of Internal Analysis Rules

	Conclusion
	References
	Biographies
	Lisa Nguyen Quang Do
	Eric Bodden

